Altivar 61

Variable speed drives for synchronous and asynchronous motors

Installation Manual

03/2011

$55 \mathrm{~kW}(75 \mathrm{HP}) \ldots 90 \mathrm{~kW}(125 \mathrm{HP}) / 200-240 \mathrm{~V}$
$90 \mathrm{~kW}(125 \mathrm{HP}) \ldots 630 \mathrm{~kW}(900 \mathrm{HP}) / 380-480 \mathrm{~V}$
$90 \mathrm{~kW}(125 \mathrm{HP}) \ldots 800 \mathrm{~kW}(800 \mathrm{HP}) / 500-690 \mathrm{~V}$

Table of Contents

Important information 4
Before you begin 5
Steps for setting up the drive 6
Preliminary recommendations 7
Drive ratings 11
Dimensions and weights 14
Installing the DC choke on ATV61H-OM3X and ATV61HOON4 drives 17
Installing the DC choke on ATV61HOOM3X and ATV61HOOON4 drives 18
Installing the transformer(s) on ATV61H○OY drives 19
Connecting the transformer(s) on ATV61HOOO drives 20
Derating as a function of the temperature and switching frequency 22
Mounting in a wall-mounted or floor-standing enclosure 25
Installing the kit for IP31/UL Type 1 conformity 28
Position of the charging LED 30
Installing option cards 31
Wiring recommendations 33
Power terminals 35
Control terminals 52
Option terminals 54
Connection diagrams 59
Connection diagrams 60
Operation on an IT system and a "corner grounded" system 73
Electromagnetic compatibility, wiring 76

PLEASE NOTE

Please read these instructions carefully and examine the equipment in order to familiarize yourself with the device before installing, operating or carrying out any maintenance work on it.

The following special messages that you will come across in this document or on the device are designed to warn you about potential risks or draw your attention to information that will clarify or simplify a procedure.

The addition of this symbol to a "Danger" or "Warning" safety label indicates that there is an electrical risk that will result in injury if the instructions are not followed.

This is a safety warning symbol. It warns you of potential risks of injury. You must comply with all safety messages that follow this symbol in order to avoid the risk of injury or death.

A DANGER

DANGER indicates an imminently hazardous situation which, if not avoided, will result in death, serious injury or equipment damage.

A WARNING

WARNING indicates a potentially hazardous situation which, if not avoided, can result in death, serious injury or equipment damage.

CAUTION indicates a potentially hazardous situation which, if not avoided, can result in injury or equipment damage.

PLEASE NOTE:

Only qualified staff are authorized to carry out maintenance work on electrical equipment. Schneider Electric accepts no responsibility for the consequences of using this device. This document does not constitute an instruction manual for inexperienced personnel.
© 2006 Schneider Electric. All rights reserved.

Read and understand these instructions before performing any procedure on this drive.

DANGER

HAZARDOUS VOLTAGE

- Read and understand this manual before installing or operating the ATV61 drive. Installation, adjustment, repair, and maintenance must be performed by qualified personnel.
- The user is responsible for compliance with all international and national electrical standards in force concerning protective grounding of all equipment.
- Many parts of this variable speed drive, including the printed circuit boards, operate at the line voltage. DO NOT TOUCH. Use only electrically insulated tools.
- DO NOT touch unshielded components or terminal strip screw connections with voltage present.
- DO NOT short across terminals PA and PB or across the DC bus capacitors.
- Install and close all covers before applying power or starting and stopping the drive.
- Before servicing the variable speed drive
- Disconnect all power.
- Place a "DO NOT TURN ON" label on the variable speed drive disconnect.
- Lock the disconnect in the open position.
- Disconnect all power including external control power that may be present before servicing the drive. Wait for the charging LED to go off. Then follow the DC bus voltage measurement procedure on page $\underline{30}$ to verify that the DC voltage is less than 45 V . The drive LEDs are not accurate indicators of the absence of DC bus voltage.
Failure to follow these instructions will result in death or serious injury.

A CAUTION
 IMPROPER DRIVE OPERATION
 - If the drive is not switched on for a long period, the performance of its electrolytic capacitors will be reduced.
 - If it is stopped for a prolonged period, turn the drive on every two years for at least 5 hours to restore the performance of the capacitors, then check its operation. It is recommended that the drive is not connected directly to the line voltage. The voltage should be increased gradually using an adjustable AC source.

Failure to follow these instructions can result in equipment damage.

Preliminary recommendations

Acceptance

The packaging contains one or more items depending on the model:

- ATV61HeeeM3X and ATV61HeeeN4 contain:
- The drive and a DC choke, both mounted on the same pallet. The DC choke consists of 1 to 3 components depending on the drive rating.
- ATV61HeeeM3XD and ATV61HeeeN4D contain:
- The drive only.
- ATV61HeeoY contains:
- The drive and one or two transformers mounted on the same pallet.

Handling/storage

To protect the drive prior to installation, handle and store the device in its packaging. Ensure that the ambient conditions are acceptable.

DAMAGED PACKAGING
If the packaging appears damaged, it can be dangerous to open and handle it.
Take precautions against all risks when performing this operation.
Failure to follow this instruction can result in death, serious injury or equipment damage.

	WARNING
DAMAGED EQUIPMENT	
Do not install or operate any drive that appears damaged.	
Failure to follow this instruction can result in death, serious injury or equipment damage.	

Preliminary recommendations

Unpacking/handling ATV61HeeeM3X and ATV61HeeoN4 drives

Figure 1

Figure 2

Figure 4

Figure 3

Figure 5

The drive and the DC choke are mounted on a pallet with screws (figure 1). When the DC choke is present, it is supplied already assembled to make it easier to transport. It consists of 1 to 3 components depending on the drive rating. The unit should be unpacked in the following order:

1 Disassemble the components of the DC choke (figure 2) for installation later, and remove the choke by means of a hoist (figure 3).

2 Remove the fixing screws (figure 3) from the choke support on the pallet.

3 Remove the screws holding the drive on the pallet and lift off the drive by means of a hoist. It is fitted with handling lugs for this purpose (figure 4).

A WARNING

RISK OF TOPPLING

Never stand the drive upright (figure 5) without keeping hold of it, or it will topple over.
Failure to follow this instruction can result in death, serious injury or equipment damage.

Unpacking/handling ATV61HeoeM3XD and ATV61HeoeN4D drives

These models do not include a DC choke; just follow the procedure in step 3 above.

Preliminary recommendations

Unpacking/handling ATV61HeeeY drives

Figure 1

Figure 2

Figure 4

Figure 3

Figure 5

The drive and one or two transformers are mounted on a pallet with screws (figure 1). The transformer(s) are supplied already assembled to make them easier to transport. The unit should be unpacked in the following order:

1 Disassemble the components of the transformer(s) (figure 2) for installation later, and remove the transformer(s) by means of a hoist (figure 3).

2 Remove the fixing screws (figure 3) from the transformer support.

A WARNING

RISK OF CUTS

The fixing screws that hold the transformer support on the pallet are difficult to access, leading to a risk of cutting oneself. Take all possible measures to avoid this risk, and use protective gloves.
Failure to follow this instruction can result in death, serious injury or equipment damage.

3 Remove the screws holding the drive on the pallet and lift off the drive by means of a hoist. It is fitted with handling lugs for this purpose (figure 4).

WARNING

RISK OF TOPPLING
Never stand the drive upright (figure 5) without keeping hold of it, or it will topple over.
Failure to follow this instruction can result in death, serious injury or equipment damage.

Preliminary recommendations

Installing the drive

- Mount the drive on a wall or the back of the enclosure in accordance with the recommendations described in this document, before installing the DC choke or transformer.

Installing the DC choke on ATV61HeeoM3X and ATV61HeeoN4 drives

ATV61H D55M3XD to D90M3XD and ATV61H D90N4D to C63N4D drives are supplied without a DC choke.
ATV61H D55M3X to D90M3X and ATV61H D90N4 to C63N4 drives are supplied with a DC choke that must be installed on top of the drive and wired in accordance with the recommendations described in this document. This choke must be used for connecting drives to the three-phase line supply.

- Mount the DC choke on the back of the enclosure or on the wall above the drive and connect it up. The instructions for installing and connecting the choke are given on page 16.
- Make sure that the seal between the drive and the choke chassis is doing its job properly.

Installing the transformer(s) on ATV61HeeeY drives

ATV61H C11Y to C80Y drives are supplied with one or two transformers to power the fan. The transformer(s) must be installed on top of the drive and wired in accordance with the recommendations set out in this document.

Installing the AC choke on ATV61HeooY drives

The use of an AC choke (to be ordered separately) is compulsory with these drives if no special transformers (e.g. 12-pulse transformer) are being used.

Precautions

Read and understand the instructions in the Programming Manual.

	CAUTION
INCOMPATIBLE LINE VOLTAGE	
Before powering up and configuring the drive, ensure that the line voltage is compatible with the supply voltage range	
shown on the drive nameplate. The drive may be damaged if the line voltage is not compatible.	
Failure to follow this instruction can result in equipment damage.	

DANGER

UNINTENDED EQUIPMENT OPERATION

- Before turning on and configuring the Altivar 61, check that the PWR (POWER REMOVAL) input is deactivated (at state 0) in order to prevent unintended operation. Do not forget to reactivate the Power Removal input to start the motor.
- Before turning on the drive, or when exiting the configuration menus, check that the inputs assigned to the run command are deactivated (at state 0) since they can cause the motor to start immediately.
Failure to follow these instructions will result in death or serious injury.

If the safety of personnel requires the prohibition of unwanted or unintended operation, electronic locking is performed by the Altivar 61's Power Removal function.
This function requires the use of connection diagrams conforming to category 3 of standard EN 954-1, ISO 13849-1 and safety integrity level 2 according to IEC/EN 61508.
The Power Removal function takes priority over any run command.

Powers in kW

Three-phase supply voltage: 200... 240 V $\mathbf{5 0 / 6 0 ~ H z}$
Three-phase motor 200... 240 V

Motor	Line supply (input)				Drive (output)		Altivar 61
Power indicated on plate (1)	Line current (2)		Max. prospective line Isc (4)	Apparent power	Max nom curr	Max. transient current (1) for 60 s	Catalog number (3)
	at 200 V	at 24					
kW	A	A	kA	kVA	A	A	
55	202	176	35	72	221	265	ATV61HD55M3X
75	269	230	35	96	285	313	ATV61HD75M3X
90	323	277	35	120	359	395	ATV61HD90M3X

Three-phase supply voltage: $\mathbf{3 8 0} . . .480 \mathrm{~V} 50 / 60 \mathrm{~Hz}$
Three-phase motor 380... 480 V

Motor	Line supply (input)				Drive (output)		Altivar 61
Power indicated on plate (1)	Line current (2)		Max. prospective line Isc (4)	Apparent power	Max. available nominal current \ln (1)	Max. transient current (1) for 60 s	Catalog number (3)
	at 380 V	at 480 V					
kW	A	A	kA	kVA	A	A	
90	166	143	35	109	179	215	ATV61HD90N4
110	202	168	35	133	215	236	ATV61HC11N4
132	239	224	35	157	259	285	ATV61HC13N4
160	289	275	50	190	314	345	ATV61HC16N4
200	357	331	50	235	427	470	ATV61HC22N4
220	396	383	50	261			
250	444	435	50	292	481	529	ATV61HC25N4
280	494	494	50	365	616	678	ATV61HC31N4
315	555	544	50	365			
355	637	597	50	419	759	835	ATV61HC40N4
400	709	644	50	467			
500	876	760	50	577	941	1,035	ATV61HC50N4
560	978	858	50	644	1,188	1,307	ATV61HC63N4
630	1,091	964	50	718			

(1)These power ratings and currents are given for an ambient temperature of $45^{\circ} \mathrm{C}\left(113^{\circ} \mathrm{F}\right)$ and at the factory-set switching frequency of 2.5 kHz , used in continuous operation.

Above 2.5 kHz , the drive will reduce the switching frequency automatically in the event of excessive temperature rise. For continuous operation above 2.5 kHz , derating must be applied to the drive nominal current in accordance with the curves on pages $\underline{21}$ and $\underline{23}$.
(2) Typical value for the indicated motor power, with a standard 4-pole motor on a line supply with the indicated "max. prospective line Isc".
(3) The drives are supplied as standard with a DC choke which must be used for connecting the drive on a three-phase line supply. For connections on the DC bus, the drive can be controlled without a choke. Just add the letter D to the end of the catalog number. For example, ATV 61HD90N4 becomes ATV 61HD90N4D.
(4) If the drive is installed on a line supply with a prospective short circuit current that is higher than the value given in this column, use line chokes (please refer to the catalog).

Powers in HP

Three-phase supply voltage: 200... 240 V $\mathbf{5 0 / 6 0 ~ H z}$
Three-phase motor 200... 240 V

Motor	Line supply (input)				Drive (output)		Altivar 61
Power indicated on plate (1)	Line current (2)		Max. prospective line Isc (4)	Apparent power	Max. available nominal current \ln (1)	Max. transient current (1) for 60 s	Catalog number (3)
	at 200 V	at 24					
HP	A	A	kA	kVA	A	A	
75	202	176	35	72	221	265	ATV61HD55M3X
100	269	230	35	96	285	313	ATV61HD75M3X
125	323	277	35	120	359	395	ATV61HD90M3X

Three-phase supply voltage: $460 . . .480 \mathrm{~V} \mathrm{50/60} \mathrm{~Hz}$

Three-phase motor 480 V

Motor	Line supply (input)			Drive (output)		Altivar 61
Power indicated on plate (1)	Line current (2)	Max. prospective line Isc (4)	Apparent power	Max. available nominal current \ln (1)	Max. transient current (1) for 60 s	Catalog number (3)
	at 480 V					
HP	A	kA	kVA	A	A	
125	143	35	109	179	215	ATV61HD90N4
150	168	35	133	215	236	ATV61HC11N4
200	224	35	157	259	285	ATV61HC13N4
250	275	50	190	314	345	ATV61HC16N4
300	331	50	235	427	470	ATV61HC22N4
350	383	50	261			
400	435	50	292	481	529	ATV61HC25N4
450	494	50	365	616	678	ATV61HC31N4
500	544	50	365			
-	597	50	419	759	835	ATV61HC40N4
600	644	50	467			
700	760	50	577	941	1,035	ATV61HC50N4
800	858	50	644	1,188	1,307	ATV61HC63N4
900	964	50	718			

(1) These power ratings and currents are given for an ambient temperature of $45^{\circ} \mathrm{C}\left(113^{\circ} \mathrm{F}\right)$ and at the factory-set switching frequency of 2.5 kHz , used in continuous operation.

Above 2.5 kHz , the drive will reduce the switching frequency automatically in the event of excessive temperature rise. For continuous operation above 2.5 kHz , derating must be applied to the drive nominal current in accordance with the curves on pages $\underline{21}$ and $\underline{23}$.
(2)Typical value for the indicated motor power, with a standard 4-pole motor on a line supply with the indicated "max. prospective line Isc".
(3) The drives are supplied as standard with a DC choke which must be used for connecting the drive on a three-phase line supply. For connections on the DC bus, the drive can be controlled without a choke. Just add the letter D to the end of the catalog number. For example, ATV 61HD90N4 becomes ATV 61HD90N4D.
(4) If the drive is installed on a line supply with a prospective short circuit current that is higher than the value given in this column, use line chokes (please refer to the catalog).

Powers in kW and HP

Three-phase supply voltage: $\mathbf{5 0 0} . . .690 \mathrm{~V} 50 / 60 \mathrm{~Hz}$
Three-phase motor 500... 690 V

Motor Power indicated on plate (1)			Line supply (input)				Drive (output)			Altivar 61
			Max. line current (2)			Max. prospective line Isc	Max. available nominal current ln (1)			Catalog number$(3)(4)$
500 V	575 V	690 V	at 500 V	at 600 V	at 690 V		500 V	575 V	690 V	
kW	HP	kW	A	A	A	kA	A	A	A	
90	125	110	128	113	117	22	136	125	125	ATV61HC11Y
110	150	132	153	133	137	28	165	150	150	ATV61HC13Y
132	-	160	182	-	163	28	200	-	180	ATV61HC16Y
160	200	200	218	197	199	35	240	220	220	ATV61HC20Y
200	250	250	277	250	257	35	312	290	290	ATV61HC25Y
250	350	315	342	311	317	35	390	355	355	ATV61HC31Y
315	450	400	426	390	394	35	462	420	420	ATV61HC40Y
400	550	500	547	494	505	35	590	543	543	ATV61HC50Y
500	700	630	673	613	616	42	740	675	675	ATV61HC63Y
630	800	800	847	771	775	42	900	840	840	ATV61HC80Y

(1) These power ratings and currents are given for an ambient temperature of $45^{\circ} \mathrm{C}\left(113^{\circ} \mathrm{F}\right)$ and at the factory-set switching frequency of 2.5 kHz , used in continuous operation.

Above 2.5 kHz , the drive will reduce the switching frequency automatically in the event of excessive temperature rise. For continuous operation above 2.5 kHz , derating must be applied to the drive nominal current in accordance with the curves on pages $\underline{24}$ to $\underline{25}$.
(2) Typical value for the indicated motor power, with a standard 4-pole motor on a line supply with the indicated "max. prospective line Isc".
(3)The drives are supplied as standard with one or two transformers which must be used for powering the fan.
(4) The use of an AC choke (to be ordered separately) is compulsory with these drives if no special transformers (e.g. 12-pulse transformer) are being used.

Note:

The maximum transient current for 60 s corresponds to 120% of the maximum nominal current In.

Dimensions and weights

| ATV61H | a | b | G | H | K |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | mm | | | | |
| (in.) | | | | | |

With 0 or 1 option card (1)
(1)For the addition of I/O extension cards, communication cards, the multi-pump card or the "Controller Inside" programmable card.

Dimensions and weights

With 0 or 1 option card (1)

With 2 option cards (1)

ATV61H	$\begin{gathered} \mathrm{a} \\ \mathrm{~mm} \\ \text { (in.) } \end{gathered}$	$\begin{gathered} \mathrm{b} \\ \mathrm{~mm} \\ \text { (in.) } \end{gathered}$	$\underset{\text { (in.) }}{\substack{\mathrm{G} \\ \hline}}$	$\begin{gathered} \mathrm{H} \\ \mathrm{~mm} \\ \text { (in.) } \end{gathered}$	$\begin{gathered} \mathrm{h} \\ \mathrm{~mm} \\ \text { (in.) } \end{gathered}$	$\underset{\text { (in.) }}{\substack{\varnothing \\ \text { (in. }}}$	$\begin{gathered} \text { For } \\ \text { screws } \end{gathered}$	Weight kg (lb.)
D55M3XD, D90N4D, D75M3XD, C11N4D	$\begin{gathered} 310 \\ (12.20) \end{gathered}$	$\begin{gathered} 680 \\ (26.77) \end{gathered}$	$\begin{gathered} \hline 250 \\ (9.84) \end{gathered}$	$\begin{gathered} 650 \\ (25.59) \end{gathered}$	$\begin{gathered} 15 \\ (0.59) \end{gathered}$	$\begin{aligned} & 11.5 \\ & (0.45) \end{aligned}$	M10	$\begin{gathered} \hline 60 \\ (132) \end{gathered}$
C13N4D, D90M3XD	$\begin{gathered} 350 \\ (13.78) \end{gathered}$	$\begin{gathered} 782 \\ (30.79) \end{gathered}$	$\begin{gathered} 298 \\ (11.73) \end{gathered}$	$\begin{gathered} 758 \\ (29.84) \end{gathered}$	$\begin{gathered} 12 \\ (0.47) \end{gathered}$	$\begin{gathered} 11.5 \\ (0.45) \end{gathered}$	M10	$\begin{gathered} 74 \\ (163) \end{gathered}$
C16N4D	$\begin{gathered} 330 \\ (12.99) \end{gathered}$	$\begin{gathered} 950 \\ (37.4) \end{gathered}$	$\begin{gathered} 285 \\ (11.22) \end{gathered}$	$\begin{gathered} 920 \\ (36.22) \end{gathered}$	$\begin{gathered} 15 \\ (0.59) \end{gathered}$	$\begin{gathered} 11.5 \\ (0.45) \end{gathered}$	M10	$\begin{gathered} 80 \\ (176) \end{gathered}$
C22N4D	$\begin{gathered} 430 \\ (16.33) \end{gathered}$	$\begin{gathered} 950 \\ (37.4) \end{gathered}$	$\begin{gathered} 350 \\ (13.78) \end{gathered}$	$\begin{gathered} 920 \\ (36.22) \end{gathered}$	$\begin{gathered} 15 \\ (0.59) \end{gathered}$	$\begin{aligned} & 11.5 \\ & (0.45) \end{aligned}$	M10	$\begin{gathered} 110 \\ (242) \end{gathered}$
C25N4D, C31N4D	$\begin{gathered} 585 \\ (23.03) \end{gathered}$	$\begin{gathered} 950 \\ (37.4) \end{gathered}$	$\begin{gathered} 540 \\ (21.26) \end{gathered}$	$\begin{gathered} 920 \\ (36.22) \end{gathered}$	$\begin{gathered} 15 \\ (0.59) \end{gathered}$	$\begin{gathered} 11.5 \\ (0.45) \end{gathered}$	M10	$\begin{gathered} \hline 140 \\ (309) \end{gathered}$

(1)For the addition of I/O extension cards, communication cards, the multi-pump card or the "Controller Inside" programmable card.

ATV61H C11Y to C20Y

ATV61H	$\begin{gathered} \mathrm{a} \\ \mathrm{~mm} \\ \text { (in.) } \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{b} \\ \mathrm{~mm} \\ \text { (in.) } \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{G} \\ \mathrm{~mm} \\ \text { (in.) } \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{H} \\ \mathrm{~mm} \\ \text { (in.) } \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{K} \\ \mathrm{~mm} \\ \text { (in.) } \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { K1 } \\ \mathrm{mm} \\ \text { (in.) } \\ \hline \end{gathered}$	K2 mm (in.)	$\begin{gathered} \varnothing \\ \mathrm{mm} \\ \text { (in.) } \\ \hline \end{gathered}$	For screws	Weight kg (lb.)
C11Y ... C20Y	$\begin{gathered} 340 \\ (13.39) \end{gathered}$	$\begin{gathered} 1,190 \\ (46.62) \end{gathered}$	$\begin{gathered} 285 \\ (11.22) \end{gathered}$	$\begin{gathered} 920 \\ (36.22) \end{gathered}$	$\begin{gathered} 150 \\ (5.91) \end{gathered}$	$\begin{gathered} 75 \\ (2.95) \end{gathered}$	$\begin{gathered} 30 \\ (1.18) \end{gathered}$	$\begin{gathered} \hline 11.5 \\ (0.45) \end{gathered}$	M10	$\begin{gathered} 102 \\ (225) \end{gathered}$
C25Y ... C40Y	$\begin{gathered} 595 \\ (23.43) \end{gathered}$	$\begin{gathered} 1,190 \\ (46.62) \end{gathered}$	$\begin{gathered} 540 \\ (21.26) \end{gathered}$	$\begin{gathered} 920 \\ (36.22) \end{gathered}$	$\begin{gathered} 150 \\ (5.91) \end{gathered}$	$\begin{gathered} 75 \\ (2.95) \end{gathered}$	$\begin{gathered} 30 \\ (1.18) \end{gathered}$	$\begin{gathered} 11.5 \\ (0.45) \end{gathered}$	M10	$\begin{gathered} 181 \\ (399) \end{gathered}$

With 0 or 1 option card (1)
With 2 option cards (1)
ATV61H C50Y to C80Y

$\xrightarrow[(15.43 \mathrm{in})]{392 \mathrm{~mm}}$
$\xrightarrow[(15.43 \mathrm{in})]{\longrightarrow}$

ATV61H	$\begin{gathered} \mathrm{a} \\ \mathrm{~mm} \\ \text { (in.) } \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{b} \\ \mathrm{~mm} \\ \text { (in.) } \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{G} \\ \mathrm{~mm} \\ \text { (in.) } \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{J} \\ \mathrm{~mm} \\ \text { (in.) } \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{J} 1 \\ \mathrm{~mm} \\ \text { (in.) } \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{H} \\ \mathrm{~mm} \\ \text { (in.) } \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{K} \\ \mathrm{~mm} \\ \text { (in.) } \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { K1 } \\ \text { mm } \\ \text { (in.) } \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{K} 2 \\ \mathrm{~mm} \\ \text { (in.) } \\ \hline \end{gathered}$	$\begin{gathered} \varnothing \\ \mathrm{mm} \\ \text { (in.) } \end{gathered}$	For screws	Weight kg (lb.)
C50Y ... C80Y	$\begin{gathered} 1120 \\ (44.09) \end{gathered}$	$\begin{gathered} 1390 \\ (54.72) \end{gathered}$	$\begin{gathered} 532.5 \\ (20.96) \end{gathered}$	$\begin{gathered} 70 \\ (2.76) \end{gathered}$	$\begin{gathered} 495 \\ (1949) \end{gathered}$	$\begin{gathered} 1,120 \\ (44.09) \end{gathered}$	$\begin{gathered} 150 \\ (5.91) \end{gathered}$	$\begin{gathered} 75 \\ (2.95) \end{gathered}$	$\begin{gathered} 30 \\ (1.18) \end{gathered}$	$\begin{gathered} 11.5 \\ (0.45) \end{gathered}$	M10	$\begin{gathered} 383 \\ (844) \end{gathered}$

(1)For the addition of I/O extension cards, communication cards, the multi-pump card or the "Controller Inside" programmable card.

Installing the DC choke on ATV61HeゃeM3X and ATV61HeゃeN4 drives

This should be performed after mounting the drive and before wiring it. If a VW3 A7 101 braking module is being used, install the module on the drive before mounting the DC choke.
During installation, ensure that no liquid, dust or conductive objects fall into the drive.

Example of installing DC chokes on an ATV61HC22N4 drive

- Mount the DC choke chassis (1) on the wall, on top of the drive. Ensure that the chassis is tightly secured to the drive to maintain the P54 seal of the ventilation duct
- Then install the DC choke (2) on the chassis (1) using the nuts provided.
- Connect the choke between the PO and PA/+ terminals on the drive (see note and next page).
- Connect the grounding strip between the DC choke chassis 1 and the drive.
- Then mount the cover (3) on the chassis and secure it with the nuts (4) provided.
- Then mount panels (5) and (6) using the screws provided.

Once the choke has been installed, the degree of protection of the top of the drive is IP31.

Note: The number of DC chokes supplied with the drive varies according to the drive rating.

Installing the DC choke on ATV61Hoゃ॰M3X and ATV61HeooN4 drives

Between 1 and 4 chokes can be connected in parallel as described in the following examples.
Table of drive/choke combinations

Drive	Number of chokes in parallel	Choke model
ATV61HD55M3X, D75M3X	1	DC-CHOKE 5
ATV61HD90M3X	1	DC-CHOKE 6
ATV61HD90N4, C11N4	1	DC-CHOKE 1
ATV61HC13N4	1	DC-CHOKE 2
ATV61HC16N4	1	DC-CHOKE 4
ATV61HC22N4	2	DC-CHOKE 1
ATV61HC25N4	2	DC-CHOKE 3
ATV61HC31N4	2	DC-CHOKE 4
ATV61HC40N4	3	DC-CHOKE 3
ATV61HC50N4	4	DC-CHOKE 2
ATV61HC63N4	4	DC-CHOKE 7

Example 1:
ATV61H D55M3X ... D90M3X, ATV61H D90N4 ... C16N4

Example 2: ATV61H C22N4 ... C31N4 Example 4: ATV61H C50N4 ... C63N4

Installing the transformer(s) on ATV61HoooY drives

This should be performed after mounting the drive and before wiring it
During installation, ensure that no liquid, dust or conductive objects fall into the drive.

Example of installing a transformer on an ATV61HC25Y drive

- Mount the transformer chassis (1) on the wall, on top of the drive. Ensure that the chassis is tightly secured to the drive to maintain the IP54 seal of the ventilation duct
- Then mount the transformer (2) on the chassis (1) using the nuts provided.
- Connect the transformer connector to the drive (see next page).
- Connect the grounding strips between the transformer chassis (1) and the drive.
- Then mount the cover (3) on the chassis and secure it with the nuts (4) provided.
- Then mount panels (5) and (6) using the screws provided.

Once the transformer has been installed, the degree of protection of the top of the drive is IP31.

Location of transformers:

ATV61 HC11Y to HC20Y: one transformer
ATV61 HC25Y to HC40Y: one transformer
ATV61 HC50Y to HC80Y: two transformers

Connecting the transformer(s) on ATV61Hゃo॰Y drives

1 to 2 transformers can be connected in parallel as described in the following examples.
Table of drive/transformer combinations

Drive	Number of transformers
ATV61H C11Y to C20Y	1
ATV61H C25Y to C40Y	1
ATV61H C50Y to C80Y	2

Example 1:
ATV61H C11Y ... C20Y

Example 2:
ATV61H C25Y ... C40Y

Unused X0 connectors are put into the parking position

Example 3: ATV61H C50Y ... C80Y

Unused X0 connectors are put into the parking position

Connecting the transformer(s) on ATV61Heo॰Y drives

Each transformer is equipped with a $500 \mathrm{~V} / 600 \mathrm{~V}$ connector and a 690 V connector. Connect the connector corresponding to the line supply (see below). The unused connector is put into the parking position.

Connecting a transformer ($\mathbf{5 0 0} \mathrm{V} / 50 \mathrm{~Hz}$ or $\mathbf{6 0 0} \mathrm{V} / 60 \mathrm{~Hz}$ supply): Use X2A

Connecting a transformer ($690 \mathrm{~V} / 50 \mathrm{~Hz}$ supply): Use X2B

The ATV61HC50Y to ATV61HC80Y models include 2 transformers. Set up this connection for each transformer.

A CAUTION

IMPROPER WIRING PRACTICES

The transformer(s) and the ATV61 drive will be damaged if the connection made does not correspond to the line voltage. Failure to follow this instruction can result in injury and/or equipment damage.

Derating as a function of the temperature and switching frequency

Derating curves for the drive current In as a function of the temperature and switching frequency.

ATV61HD55M3X, HD75M3X, HD90M3X

ATV61HC11N4

ATV61HC16N4

ATV61HD90N4

ATV61HC13N4

ATV61HC22N4

For intermediate temperatures (e.g. $55^{\circ} \mathrm{C}\left(131^{\circ} \mathrm{F}\right)$), interpolate between 2 curves.

Derating as a function of the temperature and switching frequency

ATV61HC25N4

ATV61HC50N4

ATV61HC11Y

For intermediate temperatures (e.g. $55^{\circ} \mathrm{C}\left(131^{\circ} \mathrm{F}\right)$), interpolate between 2 curves.

ATV61HC13Y

Switching frequency

ATV61HC25Y

Switching frequency

ATV61HC50Y

Switching frequency

ATV61HC16Y

Switching frequency

ATV61HC31Y

Switching frequency
ATV61HC63Y

Switching frequency

ATV61HC20Y

ATV61HC40Y

ATV61HC80Y

For intermediate temperatures (e.g. $55^{\circ} \mathrm{C}\left(131^{\circ} \mathrm{F}\right)$), interpolate between 2 curves.

Install the drive vertically at $\pm 10^{\circ}$ ．Do not place it close to heating elements．

Mounting with the heatsink inside the enclosure

The power dissipated by the drive power components is given in the table below．

Dissipated power

These levels of power dissipation are given for operation at nominal load and for a switching frequency of 2.5 kHz ．

ATV61H	Dissipated power W
D55M3X	1,715
D75M3X	1,715
D90M3X	2,204
D90N4	2,065
C11N4	2,514
C13N4	3,179
C16N4	4,036

ATV61H	Dissipated power W
C22N4	5,482
C25N4	6,379
C31N4	7,867
C40N4	9,598
C50N4	12,055
C63N4	15,007

ATV61H	Dissipated power W
$\mathbf{C 1 1 Y}$	2,325
$\mathbf{C 1 3 Y}$	2,751
$\mathbf{C 1 6 Y}$	3,287
$\mathbf{C 2 0 Y}$	4,031
$\mathbf{C 2 5 Y}$	5,159
$\mathbf{C 3 1 Y}$	6,308
$\mathbf{C 4 0 Y}$	7,551

ATV61H	Dissipated power W
	9,659
C50Y	11,954
C63Y	14,983
C80Y	

The drive has a fan for cooling the power components．The air is circulated from the bottom to the top of the unit via a duct（the duct is shown shaded gray on the diagram below）．This duct is isolated from the control section by IP54 protection．The DC choke （ATV61HeeoM3X，ATV61HeeoN4）extends this duct while maintaining IP54 protection．
The drive dissipates a great deal of power which must be evacuated to the outside of the enclosure．
Air inlets and outlets must be provided to ensure that the flow of air in the enclosure is at least equal to the value given in the table below for each drive．

	Flow rate	
ATV61H	$\mathrm{m}^{3} / \mathrm{hour}$	$\mathrm{ft}^{3} / \mathrm{min}$
D55M3X，D75M3X，D90N4，C11N4	402	236
D90M3X，C13N4	774	455
C16N4	745	438
C22N4	860	506
C25N4，C31N4	1,260	742
C40N4，C50N4	2,100	1,236
C63N4	2,400	1,412

ATV61H	Flow rate	
	$\mathrm{m}^{3} /$ hour	$\mathrm{ft}^{3} / \mathrm{min}$
C11Y，C13Y，C16Y，C2OY	600	353
C25Y，C31Y，C40Y	1,200	706
C50Y，C63Y，C80Y	2,400	1,412

Several methods of evacuation are possible，as described below for IP23 and IP54 mounting．

Figure 1

IP23 mounting（standard operating conditions）：

Figure 1

Install the drive on an enclosure baseplate．
Install the DC choke（ATV61Heゃ＠M3X，ATV61HeゃeN4）or the transformer（ATV61Hゃゃ०）in accordance with the mounting recommendations．
The simplest mounting is to extend the IP54 duct between the upper outlet of the DC choke and the top of the enclosure（1）．Fixing points are provided for this purpose on the top of the DC choke．
The hot air is thus evacuated to the outside and does not contribute towards increasing the internal temperature of the enclosure．
It is advisable to add a plate（2）approximately 150 mm from the top of the enclosure over the air outlet opening to prevent foreign bodies falling into the drive cooling duct．
The air inlet can be via a grille on the bottom front panel of the enclosure door，in accordance with the required flow rates given in the above table．

Note：

－If the air in the power circuit is totally evacuated to the outside，very little power is dissipated inside the enclosure．In this case，use the dissipated power table for dust and damp proof flange－mounting（see the next page）．
－Connect all the additional metal parts to ground using the strips．

Mounting with the heatsink inside the enclosure (continued)

Figure 2

Figure 3

IP23 mounting (standard operating conditions, continued):

Figure 2

It is advisable to use a kit for IP31/NEMA type 1 conformity (to be ordered as an option) for attaching the power cables. The design of the IP31 kit is based on the same principle as the DC choke, and has an IP54 duct to help guide the incoming air.

Note:

- If the air in the power circuit is totally evacuated to the outside, very little power is dissipated inside the enclosure. In this case, use the dissipated power table for dust and damp proof flange-mounting (see below).
- Connect all the additional metal parts to ground using the strips.

IP54 mounting (standard operating conditions):

The drive must be mounted in an IP54 enclosure in certain environmental conditions: dust, corrosive gases, high humidity with risk of condensation and dripping water, splashing liquid, etc.

The simplest way of obtaining an enclosure with IP54 protection is to follow the mounting recommendations for IP23 protection with the following additional points (figure 3):

1 Do not make an air outlet hole for the control section. Do not make an air inlet hole in the enclosure door. In the power section, the air will enter through the bottom of the enclosure via a plinth added for this purpose.
2 Add the IP31 or NEMA type 1 conformity kit in accordance with the mounting instructions.
3 Add an enclosure baseplate designed to provide IP54 protection around the power cables.
4 Add an air evacuation duct between the baseplate and the duct of the IP31 or NEMA type 1 conformity kit. The IP31 or NEMA type 1 conformity kit enables an extension duct to be mounted. Drill a hole in the base of the enclosure to allow air to enter. Place seals around the duct that has been added to maintain IP54 protection.
5 Add a 200 mm plinth at the bottom of the enclosure with grilles to allow air to enter.
6 Use the dissipated power table below to calculate the enclosure dimensions.
Note: Connect all the additional metal parts to ground using the strips.

Power dissipated by the control section inside the enclosure (for calculating the enclosure dimensions)
These levels of power dissipation are given for operation at nominal load and for the factory-set switching frequency.

ATV61H	Dissipated power (1) W
D55M3X, D75M3X, D90M3X	154
D90N4	237
C11N4	237
C13N4	261
C16N4	296
C22N4	350

ATV61H	Dissipated power (1) W
C25N4	493
C31N4	658
C40N4	772
C50N4	935
C63N4	1,116

ATV61H	Dissipated power (1) W
C11Y	174
C13Y	189
C16Y	213
C2OY	244
C25Y	326

ATV61H	Dissipated power (1) W
C31Y	377
C40Y	439
C50Y	580
C63Y	692
C80Y	857

[^0]
Dust and damp proof flange－mounting（heatsink outside the enclosure）

This mounting is used to reduce the power dissipated in the enclosure by locating the power section outside the enclosure．
This requires the use of a dust and damp proof flange mounting kit VW3A9509．．． 517 （please refer to the catalog）．
The degree of protection for drives mounted in this way becomes IP54．
To fit the kit to the drive，please refer to the manual supplied with the kit．
Check that the back of the enclosure is strong enough to support the weight of the drive．
Use the dissipated power table in the previous page to calculate the enclosure dimensions．
In this case，the DC choke（ATV61HeゃeM3X，ATV61HeゃeN4）or the transformer（s）（ATV61HeゃeY） can be mounted directly on the back of the enclosure．

If the hot air exiting the drive is not ducted and evacuated to the outside，it risks being sucked back in，making the ventilation totally ineffective．In order to avoid this，it is important to leave enough free space around the drive，as indicated below．
The enclosure must be cooled in order to get rid of the dissipated heat．

ATV61H	h 1		h2	
	mm	in．	mm	in．
D55M3X，D75M3X，D90M3X，D90N4，C11N4	100	3.94	100	3.94
C13N4，C16N4，C22N4，C11Y，C13Y，C16Y，C20Y	150	5.90	150	5.90
C25N4，C31N4，C25Y，C31Y，C40Y	200	7.87	150	5.90
C40N4，C50N4	300	11.81	250	9.84
C63N4，C50Y，C63Y，C80Y	400	15.75	250	9.84

Free space in front of the drive： 10 mm （0．39 in．）minimum

On ATV61H D55M3X to D90M3X, D90N4 to C31N4 and C11Y to C40Y drives, the cable shielding can be attached and connected to ground using one of the following two kits:

- Kit for IP31 conformity (VW3 A9 109 ... 114)
- Kit for UL Type 1 conformity (VW3 A9 209 ... 214)

On ATV61H C40N4 to C63N4 and C50Y to C80Y drives, the cable shielding can be attached and connected to ground using the kit for IP31 conformity (VW3 A9 115, 116).

This kit is not supplied with the drive. It must be ordered separately (please refer to the catalog). It is mounted under the drive as shown below.

- Mount the chassis (1) on the wall or in the bottom of the enclosure under the drive. Ensure that the chassis is tightly secured to the drive to maintain the IP54 seal of the ventilation duct. To do this, use the 2 locking flanges that are attached in the drive transport holes 5 .
- Mount the EMC plate (2) on the kit chassis using the screws provided.
- Mount the bridge (3) to ensure equipotentiality of the grounds between the drive and the EMC plate.
- Then mount the IP31 or UL Type 1 cover (4) on the EMC plate using the screws provided.

Note:

This kit makes it easier to guide the inlet air. It is supplied with a seal to provide IP54 sealing for the duct to the drive. Close the drive transport holes (5) with the plastic plugs provided.

VW3	$\begin{gathered} \mathrm{a} \\ \mathrm{~mm} \\ \text { (in.) } \end{gathered}$	b mm (in.)	C mm (in.)	G mm (in.)	G1 mm (in.)	G2 mm (in.)	$\begin{aligned} & \text { G3 } \\ & \text { mm } \\ & \text { (in.) } \end{aligned}$	H 1 mm (in.)	H 2 mm (in.)	H3 mm (in.)	\varnothing mm (in.)	For screws
A9 209	$\begin{gathered} 325 \\ (12.80) \end{gathered}$	$\begin{gathered} 228 \\ (8.98) \end{gathered}$	$\begin{gathered} 375 \\ (14.76) \end{gathered}$	$\begin{gathered} 250 \\ (9.84) \end{gathered}$				$\begin{gathered} 95 \\ (3.74) \end{gathered}$	$\begin{gathered} 73 \\ (2.87) \end{gathered}$	$\begin{gathered} 75 \\ (2.95) \end{gathered}$	$\begin{gathered} 11.5 \\ (0.45) \end{gathered}$	M10
A9 210	$\begin{gathered} 365 \\ (14.37) \end{gathered}$	$\begin{gathered} 308 \\ (12.13) \end{gathered}$	$\begin{gathered} 375 \\ (14.76) \end{gathered}$	$\begin{gathered} 298 \\ (11.73) \end{gathered}$				$\begin{gathered} 250 \\ (9.84) \end{gathered}$	$\begin{gathered} 35 \\ (1.38) \end{gathered}$	$\begin{gathered} 35 \\ (1.38) \end{gathered}$	$\begin{gathered} 11.5 \\ (0.45) \end{gathered}$	M10
A9 211	$\begin{gathered} 345 \\ (13.58) \end{gathered}$	$\begin{gathered} 323 \\ (12.72) \end{gathered}$	$\begin{gathered} 375 \\ (14.76) \end{gathered}$	$\begin{gathered} 285 \\ (11.22) \end{gathered}$				$\begin{gathered} 240 \\ (9.40) \end{gathered}$	$\begin{gathered} 35 \\ (1.37) \end{gathered}$	$\begin{gathered} 55 \\ (2.15) \end{gathered}$	$\begin{gathered} 11.5 \\ (0.45) \end{gathered}$	M10
A9 212	$\begin{gathered} 445 \\ (17.52) \end{gathered}$	$\begin{gathered} 383 \\ (15.08) \end{gathered}$	$\begin{gathered} 429 \\ (16.89) \end{gathered}$	$\begin{gathered} 350 \\ (13.78) \end{gathered}$		-		$\begin{gathered} 250 \\ (9.84) \end{gathered}$	$\begin{gathered} 65 \\ (2.56) \end{gathered}$	$\begin{gathered} 75 \\ (2.95) \end{gathered}$	$\begin{gathered} 11.5 \\ (0.45) \end{gathered}$	M10
A9 213	$\begin{gathered} 600 \\ (23.62) \end{gathered}$	$\begin{gathered} 383 \\ (15.08) \end{gathered}$	$\begin{gathered} 475 \\ (18.70) \end{gathered}$	$\begin{gathered} 540 \\ (21.26) \end{gathered}$				$\begin{gathered} 250 \\ (9.84) \end{gathered}$	$\begin{gathered} 65 \\ (2.56) \end{gathered}$	$\begin{gathered} 75 \\ (2.95) \end{gathered}$	$\begin{gathered} 11.5 \\ (0.45) \end{gathered}$	M10
A9 214	$\begin{gathered} 670 \\ (23.43) \end{gathered}$	$\begin{gathered} 383 \\ (15.08) \end{gathered}$	$\begin{gathered} 475 \\ (18.70) \end{gathered}$	$\begin{gathered} 540 \\ (21.26) \end{gathered}$	$\begin{aligned} & 102.5 \\ & (4.03) \end{aligned}$	$\begin{gathered} 27.5 \\ (1.08) \end{gathered}$		$\begin{gathered} 250 \\ (9.84) \end{gathered}$	$\begin{gathered} 65 \\ (2.56) \end{gathered}$	$\begin{gathered} 75 \\ (2.95) \end{gathered}$	$\begin{gathered} 11.5 \\ (0.45) \end{gathered}$	M10

Position of the charging LED

Before working on the drive, switch it off, wait until the red capacitor charging LED has gone out, then measure the DC bus voltage.

Position of the capacitor charging LED

Procedure for measuring the DC bus voltage

DANGER

HAZARDOUS VOLTAGE

Read and understand the instructions on page $\underline{5}$ before performing this procedure.
Failure to follow this instruction will result in death or serious injury.

The DC bus voltage can exceed $1,000 \mathrm{~V} \ldots$... Use a properly rated voltage sensing device when performing this procedure. To measure the DC bus voltage:

1 Disconnect the drive power supply.
2 Wait for the capacitor charging LED to go out.
3 Measure the voltage of the DC bus between the PA/+ and PC/- terminals to check whether the voltage is less than $45 \mathrm{~V}=$... See page 35 for the arrangement of the power terminals.
4 If the DC bus capacitors have not discharged completely, contact your local Schneider Electric representative (do not repair or operate the drive).

Installing option cards

These should ideally be installed once the drive is mounted and before wiring it.
Check that the red capacitor charging LED has gone out. Measure the DC bus voltage in accordance with the procedure on page 30 . The option cards are installed under the drive control front panel. Remove the graphic display terminal then take off the control front panel as indicated below.

Removing the control front panel

- Using a screwdriver, press down on the catch and pull to release the left-hand part of the control front panel

- Do the same on the right-hand side

- Pivot the control front panel and remove it

Removing the empty option card support

∞ATV61H D55M3X to D90M3X, ATV61H D90N4 to C63N4 and ATV61H C11Y to C80Y drives are supplied with an empty option card support. If adding an I/O or communication option card, the multi-pump card or a "Controller Inside" programmable card, remove the support using the procedure outlined below. This card support serves no purpose when at least one option card is used.

Installing option cards

Installing an encoder interface card

There is a special slot on the drive for adding an encoder interface card.

- First remove the empty option card support (if present), as indicated on the previous page, so you can access the slot for the encoder feedback card.
- If an I/O or communication option card or a "Controller Inside" programmable card has already been installed, remove it so you can access the slot for the encoder feedback card.
- After installing the encoder interface card, replace the empty card support or any option cards.

Installing an I/O extension card, a communication card, a "Controller Inside" programmable card or a multi-pump card

CAUTION
RISK OF DAMAGE TO THE CONNECTOR
Ensure good positioning of the option card on the clasps to avoid damage to the connector.
Failure to follow these instructions can result in equipment damage.

Replacing the control front panel

(3) Replace the control front panel on the option card (same procedure as for installing the option card, see (1) and (2))

Wiring recommendations

Power

The drive must be connected to the protective ground. To comply with current regulations concerning high leakage currents (above 3.5 mA), use at least a $10 \mathrm{~mm}^{2}$ (AWG 6) protective conductor or 2 protective conductors with the same cross-section as the power supply conductors.

DANGER

HAZARDOUS VOLTAGE

Ground equipment using the provided ground connecting point as shown in the figure below. The drive panel must be properly grounded before power is applied.

Failure to follow these instructions will result in death or serious injury.

- Check whether the resistance to the protective ground is one ohm or less.
- If several drives need to be connected to protective ground, each one must be connected directly to this ground as indicated opposite.

WARNING
 IMPROPER WIRING PRACTICES
 - The ATV61 drive will be damaged if input line voltage is applied to the output terminals (U/T1,V/T2,W/T3).
 - Check the power connections before powering up the ATV61 drive.
 - If replacing another drive, verify that all wiring connections to the ATV61 drive comply with all wiring instructions in this manual.

Failure to follow these instructions can result in death, serious injury or equipment damage.

When upstream protection by means of a "residual current device" is required by the installation standards, a type A device should be used for single-phase drives and type B for three-phase drives. Choose a suitable model integrating:

- HF current filtering
- A time delay which prevents tripping caused by the load from stray capacitance on power-up. The time delay is not possible for 30 mA devices. In this case, choose devices with immunity against nuisance tripping, for example "residual current devices" with reinforced immunity from the s.i range (Merlin Gerin brand).

If the installation includes several drives, provide one residual current device per drive.

INADEQUATE OVERCURRENT PROTECTION
- Overcurrent protective devices must be properly coordinated.
- The Canadian Electricity Code and the National Electrical Code require branch circuit protection. Use the fuses
recommended on the drive nameplate to achieve published short-circuit current ratings.
- Do not connect the drive to a power feeder whose short-circuit capacity exceeds the drive short-circuit current rating
listed in the tables on pages $\underline{11, \underline{12} \text { and } \underline{13} \text {. }}$ Failure to follow these instructions can result in death, serious injury or equipment damage.
Find

Wiring recommendations

Keep the power cables separate from circuits in the installation with low-level signals (sensors, PLCs, measuring apparatus, video, telephone).

The motor cables must be at least $0.5 \mathrm{~m}(20 \mathrm{in}$.) long.
In certain cases where motor cables need to be immersed in water, ground leakage currents can cause tripping. The addition of output filters is therefore required.

Do not use surge arresters or power factor correction capacitors on the variable speed drive output.

A CAUTION

IMPROPER USE OF A BRAKING RESISTOR

- Only use the braking resistance values recommended in our catalogs.
- Wire a thermal overload relay in the sequence or configure the braking resistor protection (please refer to the Programming Manual) so that the drive power section AC supply is disconnected in the event of a fault.

Failure to follow these instructions can result in injury and/or equipment damage.

Control

Keep the control circuits away from the power circuits. For control and speed reference circuits, we recommend using shielded twisted cables with a pitch of between 25 and 50 mm (0.98 and 1.97 in .) and connecting the shielding to ground at each end.

If using conduit, do not lay the motor, power supply and control cables in the same conduit. Keep the metal conduit containing the power supply cables at least 8 cm (3 in .) away from the metal conduit containing the control cables. Keep the non-metal conduits or cable ducts containing the power supply cables at least 31 cm (12 in.) away from the metal conduits containing the control cables. If it is necessary for control and power cables to cross each other, be sure they cross at right angles.

Length of motor cables

		$\begin{aligned} & \hline 0 \\ & (0 \mathrm{ft}) \end{aligned}$	$\begin{aligned} & 15 \mathrm{~m} \\ & (49.2 \mathrm{ft}) \end{aligned}$	$\begin{aligned} & 30 \mathrm{~m} \\ & (98.4 \mathrm{ft}) \end{aligned}$	$\begin{aligned} & \hline 100 \mathrm{~m} \\ & (328 \mathrm{ft}) \end{aligned}$	$\begin{aligned} & 200 \mathrm{~m} \\ & (656 \mathrm{ft}) \end{aligned}$	$\begin{aligned} & 300 \mathrm{~m} \\ & (984 \mathrm{ft}) \end{aligned}$	$\begin{aligned} & 400 \mathrm{~m} \\ & (1312 \mathrm{ft}) \end{aligned}$	$\begin{array}{r} 600 \mathrm{~m} \\ (1,968 \mathrm{ft}) \end{array}$
ATV61HeoeM3X ATV61H D90N4 to C63N4	Shielded cable				Motor choke	2 motor chokes in series			
	Unshielded cable				Motor choke		2 motor chokes in series		
ATV61H C11Y to C80Y	Shielded cable	Please refer to the catalog							
	Unshielded cable	Please refer to the catalog							

Note: On old-generation motors or those with poor insulation we recommend using a motor choke where the cable is more than $5 \mathrm{~m}(16.4 \mathrm{ft})$ long.

Choice of associated components:
Please refer to the catalog.

Power terminals

Accessing the power terminals on ATV61HeoeM3X and ATV61HeoeN4 drives

To access the power terminals, unscrew the front panel and remove the protective cover

Characteristics and functions of the power terminals

Terminal	Function	Altivar
$3 x \stackrel{\perp}{\overline{1}}$	Protective ground connection terminals	All ratings
R/L1, S/L2, T/L3 (1)	Power section AC supply	All ratings
PO	Connection of the DC choke	ATV61H D55M3X to D90M3X ATV61H D90N4 to C31N4
PO.1, PO.2	Connection of the DC chokes	ATV61H C40N4 to C63N4
PA/+	DC bus + polarity and connection of the DC choke	All ratings
PC/-	DC bus - polarity	All ratings
PA	Output to braking resistor	ATV61H D55M3X to D90M3X
PB	Output to braking resistor	ATV61H D90N4 to C22N4 (2)

(1)ATV61H C50N4 to C63N4 drives have two input bridges. The power section AC supply is connected on terminals R/L1.1-R/L1.2, S/L2.1-S/L2.2 and T/L3.1-T/L3.2.
(2)From the ATV61HC25N4 upwards, there are no braking resistor connection terminals on the drive as the braking unit is optional (please refer to the catalog). The braking resistor is then connected on the braking unit.

Power terminals

Accessing the power terminals on ATV61HeeoY drives

To access the power terminals, unscrew the front panel and remove the protective cover

Characteristics and functions of the power terminals

Terminal	Function	Altivar
$3 x \stackrel{\perp}{\overline{1}}$	Protective ground connection terminals	All ratings
R/L1, S/L2, T/L3 (1)	Power section AC supply	All ratings
PA/+	DC bus + polarity	All ratings
PC/-	DC bus - polarity	All ratings
PA	Output to braking resistor	ATV61H C11Y to C20Y (2)
PB	Output to braking resistor	All ratings
U/T1, V/T2, W/T3	Output to the motor	ATV61H C11Y to C80Y
RO, SO, TO	Separate fan supply when the drive is only powered by the DC bus	ATV61H C25Y to C80Y Refer to the User's Manual for the braking unit
BU+, BU-	Cond - polarities to be connected to the braking unit	Connection of the braking unit control cable
X20, X92, X3		

(1)ATV61H C50Y to C80Y drives have two input bridges. The power section AC supply is connected on terminals R/L1.1-R/L1.2, S/L2.1-S/L2.2 and T/L3.1-T/L3.2.
(2)From the ATV61HC25Y upwards, there are no braking resistor connection terminals on the drive as the braking unit is optional (please refer to the catalog). The braking resistor is then connected on the braking unit.

Power terminals

ATV61H D55M3X, D75M3X, D90N4, C11N4

$\mathrm{U} / \mathrm{T} 1$		$\mathrm{~V} / \mathrm{T} 2$	W/T3	
R/L1	S/L2	T/L3	PA	PB

Maximum terminal wire size/tightening torque

Drive terminals	L1/R, L2/S, L3/T, U/T1, V/T2, W/T3	PC/-, PO, PA/+	PA, PB
	$2 \times 100 \mathrm{~mm}^{2} / 24 \mathrm{Nm}$	$2 \times 100 \mathrm{~mm}^{2} / 41 \mathrm{Nm}$	$60 \mathrm{~mm} / 12 \mathrm{Nm}$
	$2 \times 250 \mathrm{MCM} / 212 \mathrm{lb}$. in	$2 \times 250 \mathrm{MCM} / 360 \mathrm{lb} . \mathrm{in}$	$250 \mathrm{MCM} / 106 \mathrm{lb} . \mathrm{in}$

Power terminals

ATV61H D90M3X, C13N4

Maximum terminal wire size/tightening torque

| Drive terminals | L1/R, L2/S, L3/T, U/T1, V/T2, W/T3 | PC/-, PO, PA/+ | PA, PB | RO, SO, TO
 (1) |
| :--- | :--- | :--- | :--- | :--- | :--- |
| | $2 \times 100 \mathrm{~mm}^{2} / 24 \mathrm{Nm}$ | $2 \times 150 \mathrm{~mm}^{2} / 41 \mathrm{Nm}$ | $60 \mathrm{~mm}^{2} / 12 \mathrm{Nm}$ | $5.5 \mathrm{~mm} / 1.4 \mathrm{Nm}$ |
| | $2 \times 250 \mathrm{MCM} / 212 \mathrm{lb} . \mathrm{in}$ | $2 \times 250 \mathrm{MCM} / 360 \mathrm{lb} . \mathrm{in}$ | $250 \mathrm{MCM} / 106 \mathrm{lb} . \mathrm{in}$ | AWG $10 / 12 \mathrm{lb} . \mathrm{in}$ |

(1)Power supply for the fans, compulsory if the drive is only powered by the DC bus. Do not use if the drive is powered with a three-phase supply by L1/R, L2/S, L3/T.

Power terminals

ATV61HC16N4

Maximum terminal wire size／tightening torque

| Drive terminals | L1／R，L2／S，L3／T，U／T1，V／T2，W／T3 | PC／－，PO，PA／＋ | PA，PB | RO，SO，TO
 （1） |
| :--- | :--- | :--- | :--- | :--- | :--- |
| | $2 \times 120 \mathrm{~mm}^{2} / 24 \mathrm{Nm}$ | $2 \times 120 \mathrm{~mm}^{2} / 24 \mathrm{Nm}$ | $120 \mathrm{~mm}^{2} / 24 \mathrm{Nm}$ | $5.5 \mathrm{~mm} / 1.4 \mathrm{Nm}$ |
| | $2 \times 250 \mathrm{MCM} / 212 \mathrm{lb} . \mathrm{in}$ | $2 \times 250 \mathrm{MCM} / 212 \mathrm{lb} . \mathrm{in}$ | $250 \mathrm{MCM} / 212 \mathrm{lb} . \mathrm{in}$ | $\mathrm{AWG} 10 / 12 \mathrm{lb} . \mathrm{in}$ |

（1）Power supply for the fans，compulsory if the drive is only powered by the DC bus．Do not use if the drive is powered with a three－phase supply by L1／R，L2／S，L3／T．

Power terminals

ATV61HC22N4

Maximum terminal wire size/tightening torque

| Drive terminals | L1/R, L2/S, L3/T, U/T1, V/T2, W/T3 | PC/-, PO, PA/+ | PA, PB | RO, SO, TO
 (1) |
| :--- | :--- | :--- | :--- | :--- | :--- |
| | $2 \times 150 \mathrm{~mm}^{2} / 41 \mathrm{Nm}$ | $2 \times 150 \mathrm{~mm}^{2} / 41 \mathrm{Nm}$ | $120 \mathrm{~mm}^{2} / 24 \mathrm{Nm}$ | $5.5 \mathrm{~mm} / 1.4 \mathrm{Nm}$ |
| | $2 \times 350 \mathrm{MCM} / 360 \mathrm{lb} . \mathrm{in}$ | $2 \times 350 \mathrm{MCM} / 360 \mathrm{lb} . \mathrm{in}$ | $250 \mathrm{MCM} / 212 \mathrm{lb} . \mathrm{in}$ | AWG $10 / 12 \mathrm{lb} . \mathrm{in}$ |

(1)Power supply for the fans, compulsory if the drive is only powered by the DC bus. Do not use if the drive is powered with a three-phase supply by L1/R, L2/S, L3/T.

Power terminals

ATV61H C25N4, C31N4

View from above

View from below

Fan terminal (1)

Maximum terminal wire size/tightening torque

Drive terminals	L1/R, L2/S, L3/T, U/T1, V/T2, W/T3	PC/-, PO, PA/+	RO, SO, TO (1)
	$4 \times 185 \mathrm{~mm}^{2} / 41 \mathrm{Nm}$	$4 \times 185 \mathrm{~mm}^{2} / 41 \mathrm{Nm}$	$5.5 \mathrm{~mm}^{2} / 1.4 \mathrm{Nm}$
	$3 \times 350 \mathrm{MCM} / 360 \mathrm{lb} . \mathrm{in}$	$3 \times 350 \mathrm{MCM} / 360 \mathrm{lb} . \mathrm{in}$	AWG 10/12 lb.in

(1)Power supply for the fans, compulsory if the drive is only powered by the DC bus. Do not use if the drive is powered with a three-phase supply by L1/R, L2/S, L3/T.

Power terminals

ATV61H C40N4

Power terminals

ATV61HC40N4

View from above

View from below

Maximum terminal wire size/tightening torque

| Drive terminals | L1/R, L2/S, L3/T, U/T1, V/T2, W/T3 | PC/-, PA/+ | RO, SO, TO (1) |
| :--- | :--- | :--- | :--- | :--- |
| | $4 \times 185 \mathrm{~mm}^{2} / 41 \mathrm{Nm}$ | $8 \times 185 \mathrm{~mm}^{2} / 41 \mathrm{Nm}$ | $5.5 \mathrm{~mm}^{2} / 1.4 \mathrm{Nm}$ |
| | $4 \times 500 \mathrm{MCM} / 360 \mathrm{lb} . \mathrm{in}$ | $4 \times 500 \mathrm{MCM} / 360 \mathrm{lb} . \mathrm{in}$ | AWG 10/12 lb.in |

(1)Power supply for the fans, compulsory if the drive is only powered by the DC bus. Do not use if the drive is powered with a three-phase supply by L1/R, L2/S, L3/T.

Power terminals

ATV61HC50N4

Power terminals

ATV61HC50N4

View from above

Maximum terminal wire size/tightening torque

| Drive terminals | R/L1.1, R/L1.2, S/L2.1,
 S/L2.2, T/L3.1, T/L3.2 | U/T1, V/T2, W/T3 | PC/-, PA/+ | RO, SO, TO (1) |
| :--- | :--- | :--- | :--- | :--- | :--- |
| | $2 \times 185 \mathrm{~mm}^{2} / 41 \mathrm{Nm}$ | $4 \times 185 \mathrm{~mm}^{2} / 41 \mathrm{Nm}$ | $8 \times 185 \mathrm{~mm}^{2} / 41 \mathrm{Nm}$ | $5.5 \mathrm{~mm} / 1.4 \mathrm{Nm}$ |
| | $2 \times 500 \mathrm{MCM} / 360 \mathrm{lb} . \mathrm{in}$ | $4 \times 500 \mathrm{MCM} / 360 \mathrm{lb} . \mathrm{in}$ | $4 \times 500 \mathrm{MCM} / 360 \mathrm{lb} . \mathrm{in}$ | AWG10/12 lb.in |

(1)Power supply for the fans, compulsory if the drive is only powered by the DC bus. Do not use if the drive is powered with a three-phase supply by L1/R, L2/S, L3/T.

Power terminals

ATV61HC63N4

Power terminals

ATV61HC63N4

View from above

Maximum terminal wire size/tightening torque

| Drive terminals | R/L1.1, R/L1.2, S/L2.1,
 S/L2.2, T/L3.1, T/L3.2 | U/T1, V/T2, W/T3 | PC/-, PA/+ | RO, SO, TO (1) |
| :--- | :--- | :--- | :--- | :--- | :--- |
| | $4 \times 185 \mathrm{~mm}^{2} / 41 \mathrm{Nm}$ | $6 \times 185 \mathrm{~mm}^{2} / 41 \mathrm{Nm}$ | $8 \times 185 \mathrm{~mm}^{2} / 41 \mathrm{Nm}$ | $5.5 \mathrm{~mm}^{2} / 1.4 \mathrm{Nm}$ |
| $3 \times 500 \mathrm{MCM} / 360 \mathrm{lb} . i n$ | $5 \times 500 \mathrm{MCM} / 360 \mathrm{lb} . \mathrm{in}$ | $5 \times 500 \mathrm{MCM} / 360 \mathrm{lb} . \mathrm{in}$ | AWG $10 / 12 \mathrm{lb} . \mathrm{in}$ | |

(1)Power supply for the fans, compulsory if the drive is only powered by the DC bus. Do not use if the drive is powered with a three-phase supply by L1/R, L2/S, L3/T.

Power terminals

ATV61H C11Y，C13Y，C16Y，C20Y

Maximum terminal wire size／tightening torque

| Drive terminals | L1／R，L2／S，L3／T，U／T1，V／T2，W／T3 | PC／－，PA／＋ | PA，PB | RO，SO，TO
 （1） |
| :--- | :--- | :--- | :--- | :--- | :--- |
| | $2 \times 120 \mathrm{~mm}^{2} / 24 \mathrm{Nm}$ | $2 \times 120 \mathrm{~mm}^{2} / 24 \mathrm{Nm}$ | $120 \mathrm{~mm}^{2} / 24 \mathrm{Nm}$ | $5.5 \mathrm{~mm} / 1.4 \mathrm{Nm}$ |
| | $2 \times 250 \mathrm{MCM} / 212 \mathrm{lb} . \mathrm{in}$ | $2 \times 250 \mathrm{MCM} / 212 \mathrm{lb} . \mathrm{in}$ | $250 \mathrm{MCM} / 212 \mathrm{lb} . \mathrm{in}$ | $\mathrm{AWG} 10 / 12 \mathrm{lb} . \mathrm{in}$ |

（1）Power supply for the fans，compulsory if the drive is only powered by the DC bus．Do not use if the drive is powered with a three－phase supply by L1／R，L2／S，L3／T．

Power terminals

ATV61H C25Y, C31Y, C40Y

Maximum terminal wire size/tightening torque

Drive terminals	L1/R, L2/S, L3/T, U/T1, V/T2, W/T3	PC/-, PA/+	RO, SO, TO (1)
	$4 \times 185 \mathrm{~mm}^{2} / 41 \mathrm{Nm}$	$4 \times 185 \mathrm{~mm}^{2} / 41 \mathrm{Nm}$	$5.5 \mathrm{~mm}^{2} / 1.4 \mathrm{Nm}$
	$3 \times 350 \mathrm{MCM} / 360 \mathrm{lb} . \mathrm{in}$	$3 \times 350 \mathrm{MCM} / 360 \mathrm{lb} . \mathrm{in}$	AWG 10/12 lb.in

(1)Power supply for the fans, compulsory if the drive is only powered by the DC bus. Do not use if the drive is powered with a three-phase supply by L1/R, L2/S, L3/T.

Power terminals

ATV61H C50Y, C63Y, C80Y

Power terminals

ATV61H C50Y, C63Y, C80Y

View from above

View from below

Maximum terminal wire size/tightening torque

| Drive terminals | R/L1.1, R/L1.2, S/L2.1,
 S/L2.2, T/L3.1, T/L3.2 | U/T1, V/T2, W/T3 | PC/-, PA/+ | RO, SO, TO (1) |
| :--- | :--- | :--- | :--- | :--- | :--- |
| | $4 \times 185 \mathrm{~mm}^{2} / 41 \mathrm{Nm}$ | $6 \times 185 \mathrm{~mm}^{2} / 41 \mathrm{Nm}$ | $8 \times 185 \mathrm{~mm}^{2} / 41 \mathrm{Nm}$ | $5.5 \mathrm{~mm}^{2} / 1.4 \mathrm{Nm}$ |
| | $3 \times 500 \mathrm{MCM} / 360 \mathrm{lb} . \mathrm{in}$ | $5 \times 500 \mathrm{MCM} / 360 \mathrm{lb} . \mathrm{in}$ | $5 \times 500 \mathrm{MCM} / 360 \mathrm{lb} . \mathrm{in}$ | AWG 10/12 lb.in |

(1)Power supply for the fans, compulsory if the drive is only powered by the DC bus. Do not use if the drive is powered with a three-phase supply by L1/R, L2/S, L3/T.

Control terminals

Accessing the control terminals

To access the control terminals, open the cover on the control front panel.

Removing the terminal card

To make it easier to wire the drive control section, the control terminal card can be removed.

- Undo the screw until the spring is fully extended.
- Remove the card by sliding it downwards.

CAUTION
IMPROPERLY SECURED TERMINAL
CARD
When replacing the control terminal card, it is essential to
fully tighten the captive screw.
Failure to follow this instruction can result in injury
and/or equipment damage.

Arrangement of the control terminals

Maximum wire size: 2.5 mm² - AWG 14

Max. tightening torque: 0.6 Nm - $5.3 \mathrm{lb} . \mathrm{in}$

Note: The ATV61 is supplied with a link between the PWR and +24 terminals.

Characteristics and functions of the control terminals

Terminal	Function	Electrical characteristics
$\begin{aligned} & \text { R1A } \\ & \text { R1B } \\ & \text { R1C } \end{aligned}$	Common point C/O contact (R1C) of programmable relay R1	- Minimum switching capacity: 3 mA for $24 \mathrm{~V}=-$ - Maximum switching capacity on resistive load: 5 A for $250 \mathrm{~V} \sim$ or $30 \mathrm{~V}=$
$\begin{aligned} & \text { R2A } \\ & \text { R2C } \end{aligned}$	N/O contact of R2 programmable relay	- Maximum switching current on inductive load ($\cos \varphi=0.4 \mathrm{~L} / \mathrm{R}=7 \mathrm{~ms}$): 2 A for $250 \mathrm{~V} \sim$ or $30 \mathrm{~V}=-$ - Reaction time: $7 \mathrm{~ms} \pm 0.5 \mathrm{~ms}$ - Service life: 100,000 operations at max. switching power

+10	+10 V =-- power supply for reference potentiometer 1 to $10 \mathrm{k} \Omega$	- $+10 \mathrm{~V}=(10.5 \mathrm{~V} \pm 0.5 \mathrm{~V})$ - 10 mA max.
$\begin{aligned} & \text { Al1+ } \\ & \text { Al1- } \end{aligned}$	Differential analog input Al1	- -10 to $+10 \mathrm{~V}=-$ (max. safe voltage 24 V$)$ - Reaction time: $2 \mathrm{~ms} \pm 0.5 \mathrm{~ms}$, 11-bit resolution +1 sign bit - Accuracy $\pm 0.6 \%$ for $\Delta \theta=60^{\circ} \mathrm{C}\left(140^{\circ} \mathrm{F}\right)$, linearity $\pm 0.15 \%$ of max. value
COM	Analog I/O common	OV
Al2	Depending on software configuration: Analog voltage input or Analog current input	- Analog input 0 to $+10 \mathrm{~V}=-($ max. safe voltage 24 V), impedance $30 \mathrm{k} \Omega$ or - Analog input $\mathrm{X}-\mathrm{Y} \mathrm{mA}, \mathrm{X}$ and Y can be programmed from 0 to 20 mA - Impedance 250Ω - Reaction time: $2 \mathrm{~ms} \pm 0.5 \mathrm{~ms}$ - 11-bit resolution, accuracy $\pm 0.6 \%$ for $\Delta \theta=60^{\circ} \mathrm{C}\left(140^{\circ} \mathrm{F}\right)$, linearity $\pm 0.15 \%$ of max. value
COM	Analog I/O common	OV
AO1	Depending on software configuration: Analog voltage output or Analog current output or Logic output	- Analog output 0 to $+10 \mathrm{~V}=$, load impedance greater than $50 \mathrm{k} \Omega$ or - Analog output X - Y mA, X and Y can be programmed from 0 to 20 mA - Max. load impedance 500Ω - 10-bit resolution, reaction time: $2 \mathrm{~ms} \pm 0.5 \mathrm{~ms}$ - Accuracy $\pm 1 \%$ for $\Delta \theta=60^{\circ} \mathrm{C}\left(140^{\circ} \mathrm{F}\right)$, linearity $\pm 0.2 \%$ of max. value or - Logic output : 0 to +10 V or 0 to 20 mA .

P24	Input for external +24 V =-- control power supply	- $+24 \mathrm{~V}=-$ (min. 19 V , max. 30 V) - Power 30 Watts			
OV	Logic input common and OV of P24 external power supply	0 V			
$\begin{aligned} & \hline \text { LI1 } \\ & \text { LI2 } \\ & \text { LI3 } \\ & \text { LI4 } \\ & \text { LII } \end{aligned}$	Programmable logic inputs	- +24 V =-= (max. 30 V) - Impedance $3.5 \mathrm{k} \Omega$ - Reaction time: $2 \mathrm{~ms} \pm 0.5 \mathrm{~ms}$	SW1 switch Source (factory setting) Sink Int or Sink Ext	$\begin{array}{\|l\|} \hline \text { State } 0 \\ \hline<5 \mathrm{~V}=- \\ \hline>16 \mathrm{~V}=- \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \text { State } 1 \\ \hline>11 \mathrm{~V}=- \\ \hline<10 \mathrm{~V}=-\mathrm{c} \\ \hline \end{array}$
LI6	Depending on the position of the SW2 switch: - Programmable logic input or - Input for PTC probes	SW2 switch on LI (factory setting) - Same characteristics as logic inputs LI1 to LI or SW2 switch on PTC - Trip threshold $3 \mathrm{k} \Omega$, reset threshold $1.8 \mathrm{k} \Omega$ - Short-circuit detection threshold $<50 \Omega$			
+24	Logic input power supply	SW1 switch in Source or Sink Int position - $+24 \mathrm{~V}=$ - power supply (min .21 V , max. 27 V), protected against short-circuits and overloads - Max. current available for customers 200 mA SW1 switch in Sink Ext position - Input for external $+24 \mathrm{~V}=$ - power supply for the logic inputs			
PWR	Power Removal safety function input When PWR is not connected to the 24 V , the motor cannot be started (compliance with functional safety standard EN 954-1, ISO 13849-1 and IEC/EN 61508)	- 24 V -- power supply (max. 30 V) - Impedance $1.5 \mathrm{k} \Omega$ - State 0 if $<2 \mathrm{~V}$, state 1 if $>17 \mathrm{~V}$ - Reaction time: 10 ms			

Option terminals

Logic I/O option card terminals (VW3 A3 201)

Maximum wire size:

$1.5 \mathrm{~mm}^{2}$ - AWG 16

Max. tightening torque:
$0.25 \mathrm{Nm}-2.21 \mathrm{lb} . \mathrm{in}$

Characteristics and functions of the terminals

Terminal	Function	Electrical characteristics
R3A	Common point C/O contact R3C of	- Minimum switching capacity: 3 mA for $24 \mathrm{~V}=-\mathrm{=}$
R3B	programmable relay R3	- Maximum switching capacity on resistive load:
R3C		5 A for $250 \mathrm{~V} \sim$ or $30 \mathrm{~V}=-$
		Maximum switching capacity on inductive load ($\cos \varphi=0.4 \mathrm{~L} / \mathrm{R}=7 \mathrm{~ms}$):
		2 A for $250 \mathrm{~V} \sim$ or $30 \mathrm{~V}=-$
		Reaction time: $7 \mathrm{~ms} \pm 0.5 \mathrm{~ms}$
		Service life: 100,000 operations

-10	-10 V =-- power supply for reference potentiometer 1 to $10 \mathrm{k} \Omega$	- $-10 \mathrm{~V}=-=(-10.5 \mathrm{~V} \pm 0.5 \mathrm{~V})$ - 10 mA max.			
+24	Logic input power supply	SW3 switch in Source or Sink Int position - $+24 \mathrm{~V}=$ - power supply (min .21 V , max. 27 V), protected against short-circuits and overloads - Max. current available for customers 200 mA . (This current corresponds to the total consumption on the control card +24 and the option cards +24) SW3 switch in Sink Ext position - Input for external +24 V =-- power supply for the logic inputs			
L17	Programmable logic inputs	- +24 V =-- power supply (max. 30 V) - Impedance $3.5 \mathrm{k} \Omega$ - Reaction time: $2 \mathrm{~ms} \pm 0.5 \mathrm{~ms}$	Switch SW3	State 0	State 1
L18			Source (factory setting)	$<5 \mathrm{~V}$ -	
LI10			Sink Int or Sink Ext	> 16 V ---	$<10 \mathrm{~V}=-\mathrm{l}$
OV	0 V	0 V			

TH1+	PTC probe input	- Trip threshold $3 \mathrm{k} \Omega$, reset threshold $1.8 \mathrm{k} \Omega$ - - Short-circuit detection threshold $<50 \Omega$
TH1-		($+24 \mathrm{~V}=-=$ (max. 30 V) - Max. current 200 mA for internal power supply and 200 mA for external power supply - Reaction time: $2 \mathrm{~ms} \pm 0.5 \mathrm{~ms}$
LO1	Open collector programmable logic outputs	
CLO2	Logic output common	0 V
OV	0 V	

Extended I/O option card terminals (VW3 A3 202)

Characteristics and functions of the terminals

Terminal	Function	Electrical characteristics
$\begin{aligned} & \text { R4A } \\ & \text { R4B } \\ & \text { R4C } \end{aligned}$	Common point C/O contact R4C of programmable relay R4	- Minimum switching capacity: 3 mA for $24 \mathrm{~V}=-$ - Maximum switching capacity on resistive load: 5 A for 250 V ~ or 30 V =- - Maximum switching capacity on inductive load ($\cos \varphi=0.4 \mathrm{~L} / \mathrm{R}=7 \mathrm{~ms}$): 1.5 A for $250 \mathrm{~V} \sim$ or $30 \mathrm{~V}=-$ - Reaction time: $10 \mathrm{~ms} \pm 1 \mathrm{~ms}$ - Service life: 100,000 operations

-10	-10 V =-- power supply for reference potentiometer 1 to $10 \mathrm{k} \Omega$	- $-10 \mathrm{~V}=-=(-10.5 \mathrm{~V} \pm 0.5 \mathrm{~V})$ - 10 mA max.
Al3+	+ polarity of the current differential analog input AI3	- Analog input $X-Y$ mA, X and Y can be programmed from 0 to 20 mA , impedance 250Ω - Reaction time: $5 \mathrm{~ms} \pm 1 \mathrm{~ms}$ - 11 -bit resolution +1 sign bit, accuracy $\pm 0.6 \%$ for $\Delta \theta=60^{\circ} \mathrm{C}\left(140^{\circ} \mathrm{F}\right)$ - Linearity $\pm 0.15 \%$ of max. value
Al3-	- polarity of the current differential analog input AI3	
Al4	Depending on software configuration: Analog current input or Analog voltage input	- Analog input 0 to $+10 \mathrm{~V}=-$ (max. safe voltage 24 V), impedance $30 \mathrm{k} \Omega$ or - Analog input $\mathrm{X}-\mathrm{Y} \mathrm{mA}, \mathrm{X}$ and Y can be programmed from 0 to 20 mA , impedance 250Ω - Reaction time: $5 \mathrm{~ms} \pm 1 \mathrm{~ms}$ - 11 -bit resolution, accuracy $\pm 0.6 \%$ for $\Delta \theta=60^{\circ} \mathrm{C}\left(140^{\circ} \mathrm{F}\right)$, linearity $\pm 0.15 \%$ of max. value
COM	Analog I/O common	0 V
$\begin{array}{\|l\|} \hline \mathrm{AO2} \\ \mathrm{AO} 3 \end{array}$	Depending on software configuration: Analog voltage outputs or Analog current outputs	- $0-10 \mathrm{~V}=$ or $-10 /+10 \mathrm{~V}=$ bipolar analog output depending on software configuration, load impedance greater than $50 \mathrm{k} \Omega$ or - Analog current output $X-Y \mathrm{~mA}, \mathrm{X}$ and Y can be programmed from 0 to 20 mA , max. load impedance 500Ω - 10-bit resolution - Reaction time $5 \mathrm{~ms} \pm 1 \mathrm{~ms}$, accuracy $\pm 1 \%$ for $\Delta \theta=60^{\circ} \mathrm{C}\left(140^{\circ} \mathrm{F}\right)$, linearity $\pm 0.2 \%$

Option terminals

Terminal	Function	Electrical characteristics			
+24	Logic input power supply	SW4 switch in Source or Int Sink position - +24 V =- output (min. 21 V , max. 27 V), protected against short-circuits and overloads - Max. current available for customers 200 mA . (This current corresponds to the total consumption on the control card +24 and the option cards +24) SW4 switch in Sink Ext position - Input for external +24 V =-. power supply for the logic inputs			
LI11	Programmable logic inputs	- +24 V =-- (max. 30 V) - Impedance $3.5 \mathrm{k} \Omega$ - Reaction time: $5 \mathrm{~ms} \pm 1 \mathrm{~ms}$	SW4 switch	State 0	
L112				State 0	
LI13			Source (factory setting)	< 5 V ---	> 11 V ---
			Sink Int or Sink Ext	$>16 \mathrm{~V}=-\mathrm{c}$	$<10 \mathrm{~V}=-$
OV	Logic input common	0 V			

$\begin{aligned} & \text { TH2 + } \\ & \text { TH2 - } \end{aligned}$	PTC probe input	- Trip threshold $3 \mathrm{k} \Omega$, reset threshold $1.8 \mathrm{k} \Omega$ - Short-circuit detection threshold < 50Ω
RP	Frequency input	- Frequency range: $0 . . .30 \mathrm{kHz}$ - Cyclic ratio: $50 \% \pm 10 \%$ - Maximum sampling time: $5 \mathrm{~ms} \pm 1 \mathrm{~ms}$ - Maximum input voltage $30 \mathrm{~V}, 15 \mathrm{~mA}$ - Add a resistor if the input voltage is greater than $5 \mathrm{~V}(510 \Omega$ for 12 V , 910Ω for $15 \mathrm{~V}, 1.3 \mathrm{k} \Omega$ for 24 V) - State 0 if $<1.2 \mathrm{~V}$, state 1 if $>3.5 \mathrm{~V}$
$\begin{aligned} & \mathrm{LO} 3 \\ & \mathrm{LO} 4 \end{aligned}$	Open collector programmable logic outputs	- +24 V =-- (max. 30 V) - Max. current 20 mA for internal power supply and 200 mA for external power supply - Reaction time: $5 \mathrm{~ms} \pm 1 \mathrm{~ms}$
CLO	Logic output common	
OV	0 V	0 V

Option terminals

Encoder interface card terminals

VW3 A3 411		
\bigcirc	A +	
\bigcirc	A -	
\bigcirc	B +	
\bigcirc	B -	
\bigcirc	Z +	Maximum wire size: $1.5 \mathrm{~mm}^{2}$ - AWG 16
\bigcirc	Z -	
\bigcirc	P	Max. tightening torque:
\bigcirc	0	$0.25 \mathrm{Nm}-2.21 \mathrm{lb} . \mathrm{in}$
)	OA +	
)	OA -	
)	$\mathrm{OB}+$	
)	OB -	
\bigcirc	OZ +	
\bigcirc	OZ -	

Characteristics and functions of the terminals

Encoder interface cards with RS422-compatible differential outputs

Terminal	Function	Electrical characteristics	
		VW3 A3 401	VW3 A3 402
+Vs	Power supply for encoder	- 5 V =-- (max. 5.5 V) protected against short-circuits and overloads - Max. current 200 mA	- 15 V --- (max. 16 V) protected against short-circuits and overloads - Max. current 175 mA
OVs			
$\begin{aligned} & \mathrm{A}, / \mathrm{A} \\ & \mathrm{~B}, / \mathrm{B} \end{aligned}$	Incremental logic inputs	- Max. resolution: 5,000 points/rev - Max. frequency: 300 kHz - Nominal input voltage: 5 V	

Encoder interface cards with open collector outputs

Terminal	Function	Electrical characteristics	
		VW3 A3 403	VW3 A3 404
+Vs	Power supply	- $12 \mathrm{~V}=-\mathrm{e}$ (max. 13 V) protected against short-circuits	- $15 \mathrm{~V}=-\mathrm{e}$ (max. 16 V) protected against short-circuits
OVs	for encoder	and overloads - Max. current 175 mA	and overloads - Max. current 175 mA
$\begin{aligned} & \mathrm{A}, / \mathrm{A} \\ & \mathrm{~B}, / \mathrm{B} \end{aligned}$	Incremental logic inputs	- Max. resolution: 5,000 points/rev - Max. frequency: 300 kHz	

Encoder interface cards with push-pull outputs

Terminal	Function	Electrical characteristics		
		VW3 A3 405	VW3 A3 406	VW3 A3 407
+Vs	Power supply for encoder	- $12 \mathrm{~V}=$ - (max. 13 V) protected against short-circuits and overloads - Max. current 175 mA	- $15 \mathrm{~V}=-\mathrm{e}$ (max. 16 V) protected against short-circuits and overloads - Max. current 175 mA	- $24 \mathrm{~V}=-(\mathrm{min} .20 \mathrm{~V}$, max. 30 V) protected against short-circuits and overloads - Max. current 100 mA
OVs				
	State 0	If < 1.5 V		
	State 1	If $>7.7 \mathrm{~V}$ and $<13 \mathrm{~V}$	If $>7.7 \mathrm{~V}$ and $<16 \mathrm{~V}$	If > 11.5 V and $<25 \mathrm{~V}$
$\begin{aligned} & \mathrm{A}, / \mathrm{A} \\ & \mathrm{~B}, / \mathrm{B} \end{aligned}$	Incremental logic inputs	- Max. resolution: 5,000 points/rev - Max. frequency: 300 kHz		

Option terminals

Encoder interface cards with RS422 compatible differential outputs with encoder emulation

Terminal	Function	Electrical characteristics	
		VW3 A3 411	
P	Encoder power	- $5 \mathrm{~V}=-\mathrm{-}$ (max. 5.5 V) protected against short-circuits	- $15 \mathrm{~V}=-\mathrm{-}$ (max. 16 V) protected against short-circuits
0		and overloads - Max. current 200 mA	and overloads - Max. current 200 mA
$\begin{aligned} & \mathrm{A}+, \mathrm{A}- \\ & \mathrm{B}+, \mathrm{B} \\ & \mathrm{Z}+, \mathrm{Z} \end{aligned}$	Logic inputs	- Max. resolution: 10,000 points/rev - Max. frequency: 300 kHz	
$\begin{aligned} & \mathrm{OA}+, \mathrm{OA}- \\ & \mathrm{OB}+, \mathrm{OB}- \\ & \mathrm{OZ}+, \mathrm{OZ}- \end{aligned}$	Logic outputs	- Selectable ratio: $1,1 / 2,1 / 4,1 / 8,1 / 16,1 / 32,1 / 64$ - Max. frequency: 300 kHz	

This encoder card has two groups of parameter switches:

- The first is for selecting the supply voltage supplied by the interface card to the encoder: 5 V or 15 V .
- The second is a set of five switches numbered 1 to 5 (see diagram below). The division ratio for the ESIM outputs is selected using switches 1,2 and 3 . Switches 4 and 5 are used to select the input signals for the encoder card. Fault detection will be inhibited for the inputs selected using these switches.

1	2	3	ESIM outputs	4	5	Encoder inputs
ON	ON	ON	A and B divided by 1	ON	ON	Encoder A, B and Z
ON	ON	OFF	A and B divided by 2	ON	OFF	Encoder A and B
ON	OFF	ON	A and B divided by 4	OFF	ON	Encoder A and B
ON	OFF	OFF	A and B divided by 8	OFF	OFF	Encoder A

OFF	ON	ON	A and B divided by 16
OFF	ON	OFF	A and B divided by 32
OFF	OFF	ON	A and B divided by 64
OFF	OFF	OFF	ESIM disabled

Selecting the encoder

The 8 encoder interface cards available as an option with the ATV61 enable three different encoder technologies to be used.

- Optical incremental encoder with differential outputs compatible with the RS422 standard
- Optical incremental encoder with open collector outputs
- Optical incremental encoder with push-pull outputs
- Incremental encoder with RS422-compatible differential outputs with encoder emulation

The encoder must comply with the following two limits:

- Maximum encoder frequency 300 kHz
- Maximum resolution 5,000 points/revolution

Choose the max. standard resolution within these two limits to obtain optimum accuracy.

Connection diagrams

Wiring the encoder

Use a shielded cable containing 3 twisted pairs with a pitch of between 25 and 50 mm (0.98 in . and 1.97 in .). Connect the shielding to ground at both ends.
The minimum cross-section of the conductors must comply with the table below to limit line voltage drop.

Max. encoder cable length	VW3 A3 401... 402			VW3 A3 403... 407		
	Max. consumption current of encoder	Minimum cross-section of conductors		Max. consumption current of encoder	Minimum cross-section of conductors	
$\begin{gathered} 10 \mathrm{~m} \\ 32.8 \mathrm{ft} \end{gathered}$	100 mA	$0.2 \mathrm{~mm}^{2}$	AWG 24	100 mA	0.2 mm ${ }^{2}$	AWG 24
	200 mA	$0.2 \mathrm{~mm}^{2}$	AWG 24	200 mA	$0.2 \mathrm{~mm}^{2}$	AWG 24
$\begin{aligned} & 50 \mathrm{~m} \\ & 164 \mathrm{ft} \end{aligned}$	100 mA	$0.5 \mathrm{~mm}^{2}$	AWG 20	100 mA	$0.5 \mathrm{~mm}^{2}$	AWG 20
	200 mA	$0.75 \mathrm{~mm}^{2}$	AWG 18	200 mA	$0.75 \mathrm{~mm}^{2}$	AWG 18
$\begin{aligned} & 100 \mathrm{~m} \\ & 328 \mathrm{ft} \end{aligned}$	100 mA	$0.75 \mathrm{~mm}^{2}$	AWG 18	100 mA	$0.75 \mathrm{~mm}^{2}$	AWG 18
	200 mA	$1.5 \mathrm{~mm}^{2}$	AWG 15	200 mA	$1.5 \mathrm{~mm}^{2}$	AWG 16
$\begin{aligned} & 200 \mathrm{~m} \\ & 656 \mathrm{ft} \end{aligned}$	-	-	-	100 mA	$0.5 \mathrm{~mm}^{2}$	AWG 20
	-	-	-	200 mA	$1.5 \mathrm{~mm}^{2}$	AWG 15
$\begin{aligned} & 300 \mathrm{~m} \\ & 984 \mathrm{ft} \end{aligned}$	-	-	-	100 mA	$0.75 \mathrm{~mm}^{2}$	AWG 18
	-	-	-	200 mA	$1.5 \mathrm{~mm}^{2}$	AWG 15

Max. encoder cable length	VW3 A3 411				
	Max. consumption current of encoder	Minimum cross-section of conductors			
		15 V power supply		5 V power supply	
$\begin{aligned} & 25 \mathrm{~m} \\ & 82 \mathrm{ft} \end{aligned}$	100 mA	$0.2 \mathrm{~mm}^{2}$	AWG 24	$0.5 \mathrm{~mm}^{2}$	AWG 20
	200 mA	$0.5 \mathrm{~mm}^{2}$	AWG 20	$1 \mathrm{~mm}^{2}$	AWG 17
$\begin{aligned} & 50 \mathrm{~m} \\ & 164 \mathrm{ft} \end{aligned}$	100 mA	$0.5 \mathrm{~mm}^{2}$	AWG 20	$0.75 \mathrm{~mm}^{2}$	AWG 18
	200 mA	$0.75 \mathrm{~mm}^{2}$	AWG 18	$1.5 \mathrm{~mm}^{2}$	AWG 15
$\begin{aligned} & 100 \mathrm{~m} \\ & 328 \mathrm{ft} \end{aligned}$	100 mA	$0.75 \mathrm{~mm}^{2}$	AWG 18	-	-
	200 mA	$1.5 \mathrm{~mm}^{2}$	AWG 15	-	-

Connection diagrams

Connection diagrams conforming to standards EN 954-1 category 1, ISO 13849-1 and IEC/EN 61508 capacity SIL1, stopping category 0 in accordance with standard IEC/EN 60204-1

Diagram with line contactor

Diagram with switch disconnect

(1)Line choke, if required, for ATV61HeeeM3X and ATV61HeeeN4, compulsory for ATV61HeeeY (to be ordered separately) if no special transformers (e.g. 12-pulse transformer) are being used.
(2)Fault relay contacts, for remote signaling of drive status.
(3)For the wiring of the power section AC supply of ATV61HC50N4, C63N4, C50Y, C63Y and C80Y drives, refer to page 63.

Note: Install interference suppressors on all inductive circuits near the drive or coupled to the same circuit (relays, contactors, solenoid valves, etc).

Choice of associated components:
Please refer to the catalog.

Connection diagrams conforming to standards EN 954－1 category 3，ISO 13849－1 and IEC／EN 61508 capacity SIL2，stopping category 0 in accordance with standard IEC／EN 60204－1

This connection diagram is suitable for use with machines with a short freewheel stop time（with low inertia or high resistive torque）． When the emergency stop is activated，the drive power supply is turned off immediately and the motor stops in accordance with category 0 of standard IEC／EN 60204－1．

（1）Line choke，if required，for ATV61Hゃゃ॰M3X and ATV61H $\bullet \bullet$ N4，compulsory for ATV61Hゃゃ॰Y（to be ordered separately）if no special transformers（e．g．12－pulse transformer）are being used．
（2）Fault relay contacts，for remote signaling of drive status．
（3）It is essential to connect the shielding on the cable connected to the Power Removal input to ground．
（4）For the wiring of the power section AC supply of ATV61HC50N4，C63N4，C50Y，C63Y and C80Y drives，refer to page 63.
（5）Use cable ends DZ5CE020（yellow）on wires connected to PWR and +24 inputs．
－Standard EN 954－1 category 3 and ISO 13849－1 require the use of a stop button with double contact（S1）．
－S1 is used to activate the Power Removal safety function．
－S2 is used to initialize the Preventa module when powering up or after an emergency stop．ESC enables the use of other initialization conditions for the module．
－One Preventa module can be used for the Power Removal safety function on several ATV61 drives．
－A logic output on the Preventa module can be used to indicate safely that the drive is operating in safe conditions．

Note：

For preventive maintenance，the Power Removal function must be activated at least once a year．
The drive must be switched off before preventive maintenance takes place，and then switched back on again．
The drive logic output signals cannot be considered as safety－type signals．
Fit interference suppressors to all inductive circuits near the drive or coupled to the same circuit（relays，contactors，solenoid valves，etc）．

Choice of associated components：
 Please refer to the catalog．

Connection diagrams conforming to standards EN 954-1 category 3, ISO 13849-1 and IEC/EN 61508 capacity SIL2, stopping category 1 in accordance with standard IEC/EN 60204-1

This connection diagram is suitable for use with machines with a long freewheel stop time (machines with high inertia or low resistive torque).

When the emergency stop is activated, deceleration of the motor controlled by the drive is requested first. Then, after a time delay corresponding to the deceleration time, the Power Removal safety function is activated.

Example:

- 2-wire control
- LI1 assigned to forward
- LI2 assigned to reverse

(1) Line choke, if required, for ATV61H $\bullet \bullet$ M3X and ATV61HeゃeN4, compulsory for ATV61Hee๐Y (to be ordered separately) if no special transformers (e.g. 12-pulse transformer) are being used.
(2)Fault relay contacts, for remote signaling of drive status.
(3) In this example, the logic inputs Lix are wired as "Source" but can be wired as "Sink Int" or "Sink Ext" (please refer to page 64).
(4) It is essential to connect the shielding on the cable connected to the Power Removal input to ground.
(5)For the wiring of the power section AC supply of ATV61HC50N4, C63N4, C50Y, C63Y and C80Y drives, refer to page 63.
(6)Use cable ends DZ5CE020 (yellow) on wires connected to PWR and +24 inputs.
- Standard EN 954-1 category 3 and ISO 13849-1 require the use of an emergency stop with double contact (S1).
- S1 is used to activate the Power Removal safety function.
- S2 is used to initialize the Preventa module when powering up or after an emergency stop. ESC enables the use of other initialization conditions for the module.
- One Preventa module can be used for the Power Removal safety function on several ATV61 drives. In this case the time delay must be set to the longest stopping time.
- A logic output on the Preventa module can be used to indicate safely that the drive is operating in safe conditions.

Note: For preventive maintenance, the Power Removal function must be activated at least once a year.
The drive must be switched off before preventive maintenance takes place, and then switched back on again.
The drive logic output signals cannot be considered as safety-type signals.
Install interference suppressors on all inductive circuits near the drive or coupled to the same circuit (relays, contactors, solenoid valves, etc).

Choice of associated components:

Please refer to the catalog.

Connection diagrams

Power terminal connection diagram for ATV61H C50N4，C63N4，C50Y，C63Y and C80Y drives

To disconnect

（1）Line chokes，if required，for ATV61Hゃゃ॰N4，compulsory for ATV61Hゃゃ०Y（to be ordered separately）if no special transformers（e．g．12－pulse transformer）are being used．

Braking resistor connection diagram

ATV61H D55M3X，D75M3X，D90M3X
ATV61H D90N4 to C22N4
ATV61H C11Y to C20Y
For these drive ratings，braking resistors are connected directly to the terminals at the base of the drive（terminals PA／＋and PB）．

（1）Thermal overload relay

ATV61H C25N4 to C63N4
ATV61H C25Y to C80Y
For these drive ratings，braking resistors are connected to the external braking unit．Refer to the braking unit User＇s Manual．

Connection diagrams

Control connection diagrams

Control card connection diagram

Logic input switch (SW1)

The logic input switch (SW1) is used to adapt the operation of the logic inputs to the technology of the programmable controller outputs.

- Set the switch to Source (factory setting) if using PLC outputs with PNP transistors.
- Set the switch to Sink Int or Sink Ext if using PLC outputs with NPN transistors.
- SW1 switch set to "Source" position

- SW1 switch set to "Sink Int" position

- SW1 switch set to "Source" position and use of an external power supply for the LIs

- SW1 switch set to "Sink Ext" position

A WARNING

UNINTENDED EQUIPMENT OPERATION
When the SW1 switch is set to "Sink Int" or "Sink Ext", the common must never be connected to ground or the protective ground, as there is then a risk of unintended equipment operation on the first insulation fault.

Failure to follow this instruction can result in death, serious injury or equipment damage.

Connection diagrams

Bipolar speed reference

Speed reference using axis control

SW2 switch

The LI6 logic input switch (SW2) makes it possible to use the LI6 input:

- either as a logic input by setting the switch to LI (factory setting)
- or for motor protection via PTC probes by setting the switch to PTC

Control power supply via an external source

The control card can be supplied via an external $+24 \mathrm{~V}=$ =- source

Connection diagrams

I/O extension card connection diagrams

Connection diagram for extended I/O option card (VW3A3202)

Connection diagram for logic I/O option card (VW3A3201)

Connection diagrams

SW3/SW4 logic I/O switch

- Switch in "Source" position

SW3 or SW4

- Switch in "Source" position and use of an external +24 V =-- source SW3 or SW4

- Switch in "Sink Ext" position

A WARNING

UNINTENDED EQUIPMENT OPERATION

When the SW3 or SW4 switches are set to "Sink Int" or "Sink Ext", the common must never be connected to ground or the protective ground, as there is then a risk of unintended equipment operation on the first insulation fault.

Failure to follow this instruction can result in death, serious injury or equipment damage.

Connection diagrams

Connection of several drives in parallel on the DC bus

These drives must all have the same voltage rating．

Connection on DC bus between drives with equivalent ratings

Each drive uses its own charging circuit

Drives（1），（2）and（3）must not be more than one size apart when they are connected in this way．
F1，F2，F3：Fast－acting semiconductor fuses for protection on the DC bus side．
Connection on DC bus between drives with different ratings

（1）Line choke，if required，for ATV61Hゃゃ॰M3X and ATV61H $\bullet \bullet \bullet N 4$ ，compulsory for ATV61H $\bullet \bullet \bullet$ Y（to be ordered separately）if no special transformers（e．g．12－pulse transformer）are being used．
（2）Drives（2）and（3）powered only by their DC bus do not necessarily have a DC choke（catalog number ATV61HeゃeM3XD or ATV61H•ooN4D）．
（3）Separate fan power supply for certain ratings，see warning below．
F1，F2，F3：Fast－acting semiconductor fuses for protection on the DC bus side．

A CAUTION

RISK OF DAMAGE TO DRIVES

－Drive 1 must be large enough to supply all the motors capable of operating simultaneously．
－When models D90M3X，C13N4 to C63N4 and C11Y to C80Y（drive 3 in diagram above）are powered only by their DC bus and not by their R／L1，S／L2，T／L3 terminals，it is essential to power the fans separately with a three－phase supply $380 . . .480 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$（RO， SO，TO terminals），protected with fuses or motor disconnect．Power and connection are detailed on the following page．
Failure to follow these instructions can result in injury and／or equipment damage．

Connection diagrams

Power consumed by the fans

ATV61H drive	Power consumed by the fans
D90M3X, C13N4, C16N4, C22N4, C11Y, C13Y, C16Y, C20Y	550 VA
C25N4, C31N4, C25Y, C31Y, C40Y	$1,100 \mathrm{VA}$
C40N4, C50N4, C63N4, C50Y, C63Y, C80Y	$2,200 \mathrm{VA}$

Connecting fans for a separate power supply

In order to remove the link between the fans and power supply terminals R/L1, S/L2, T/L3 and take it to terminals RO, SO, TO, connectors X 1 and X 4 must be crossed as indicated on the diagrams below.
ATV61H D90M3X, C13N4 to C22N4, C11Y to C20Y
Factory wiring: fans powered internally by R/L1, S/L2, T/L3

Modification for fans powered externally by R0, S0, T0

Connection diagrams

ATV61H C25N4, C31N4, C25Y to C40Y

Connection diagrams

ATV61H C40N4, C50N4

Connection diagrams

ATV61H C63N4, C50Y to C80Y

Operation on an IT system and a "corner grounded" system

IT system: Isolated or impedance grounded neutral system.
Use a permanent insulation monitor compatible with non-linear loads, such as a Merlin Gerin type XM200 or equivalent.
Altivar 61 drives feature built-in RFI filters. In the case of ATV61H C11Y to C80Y drives, the filters must be isolated from ground for operation on an IT system, as illustrated in the diagrams below. For other models, the filters can be isolated from ground, but this is not compulsory.
"Corner grounded" system: System with one phase connected to ground.

	WARNING
RISK OF ELECTRIC SHOCK	
ATV61H C11Y to C80Y drives must not be connected on a "corner grounded" system.	
Failure to follow this instruction can result in death, serious injury or equipment damage.	

Disconnecting RFI filters

ATV61H D90N4 to C13N4 and ATV61H C11Y to C20Y:

ATV61H C16N4 to C22N4:

RISK OF DAMAGE TO DRIVE
For operation on IT or "corner grounded" systems, the filter must be disconnected.
Failure to follow this instruction can result in injury and/or equipment damage.

Operation on an IT system and a "corner grounded" system

ATV61H C25N4 to C31N4 and ATV61H C25Y to C40Y:

ATV61HC40N4:

$$
\underset{=}{\perp} \text { (filter connected) } \quad \not \approx \text { (filter disconnected) }
$$

	CAUTION
RISK OF DAMAGE TO DRIVE For operation on IT or "corner grounded" systems, the filter must be disconnected. Failure to follow this instruction can result in injury and/or equipment damage.	

Operation on an IT system and a "corner grounded" system

ATV61HC50N4:

ATV61HC63N4 and ATV61H C50Y to C80Y:

$\underset{\text { 上 }}{\perp} \xrightarrow{\text { Normal }}$ (fiter connected)
$\begin{array}{ll}\text { W } & \text { IT system } \\ \text { (filter disconnected) }\end{array}$

	CAUTION
RISK OF DAMAGE TO DRIVE	
For operation on IT or "corner grounded" systems, the filter must be disconnected.	
Failure to follow this instruction can result in injury and/or equipment damage.	

Electromagnetic compatibility

Principle

- Grounds between drive, motor and cable shielding must have "high frequency" equipotentiality.
- Use of shielded cables with shielding connected to ground at both ends for the motor cables, braking resistor (if used) and control-signal cables. Metal ducting or conduit can be used for part of the shielding length provided that there is no break in continuity.
- Ensure maximum separation between the power supply cable (line supply) and the motor cable.

Installation diagram

ATV61H D55M3X to D90M3X, ATV61H D90N4 to C63N4 and ATV61H C11Y to C80Y

1 Altivar 61
2 Sheet steel grounded plate
3 Metal clamps
4 Shielded cable for motor connection with shielding connected to ground at both ends. The shielding must be continuous and intermediate terminals must be in EMC shielded metal boxes.

5 Shielded cable for connecting the braking resistor (if used). The shielding must be continuous and intermediate terminals must be in EMC shielded metal boxes.

6 Shielded cables for connecting the control-signal wiring. For applications requiring several conductors, use cables with a small cross-section ($0.5 \mathrm{~mm}^{2}$).

7 Shielded cables for connecting the Power Removal safety function input. The shielding must be continuous and intermediate terminals must be in EMC shielded metal boxes.

8 Shielded cables for connecting the encoder. The shielding must be continuous and intermediate terminals must be in EMC shielded metal boxes.

9 Non-shielded wires for relay contact output.
10 Unshielded drive power supply cables.

Note:

- If using an additional input filter, it should be connected directly to the line supply via an unshielded cable. Link 10 on the drive is then via the filter output cable.
- The HF equipotential ground connection between the drive, motor and cable shielding does not remove the need to connect the PE protective conductors (green-yellow) to the appropriate terminals on each unit.

[^0]: (1) Add 7 W to this value for each option card added

